Introduction to Differential Expression Analysis

Microarray Experiment Steps

- Biological question
- Experimental design
- Microarray experiment
- Data Analysis
- Biological verification and interpretation
- Database
Most Common Types of Data Analysis

- **Class Discovery** (Clustering, Unsupervised learning)
- **Class Prediction** (Classification, Supervised Learning)
- **Class Comparison** (Differential Expression)

Outline

- Differential expression experiments
- First look at microarray data
- Data transformations and basic plots
- General statistical issues

Differential Expression

- Many microarray experiments are carried out to find genes which are differentially expressed between two (or more) samples of cells. Examples abound!
- Initially, comparative microarray experiments were done with few, if any replicates, and statistical criteria were not used for identifying differentially expressed genes. Instead, simple criteria were used such as fold-change, with 2-fold being a popular cut-off.
- The simplest experiment involves comparing two samples on one array with two-color technology or two arrays if using one-color technology
Northern Blot Data

Microarray Data

Why log?
Why logs?

- For better of worst, fold changes are the preferred quantification of differential expression. Fold changes are basically ratios.
- Biologist sometimes use the following weird notation: -2 means 1/2, -3 means 1/3, etc… Note there are no values between -1 and 1!
- Ratios are not symmetric around 1. This makes it problematic to perform statistical operations with ratios. We prefer logs.

Why logs

- The intensity distribution has a fat right tail.
- Log of ratios are symmetric around 0:
 - Average of 1/10 and 10 is about 5
 - Average of log(1/10) and 10 is 0
 - Averaging ratios is almost always a bad idea!

Facts you must remember:
- log(1) = 0
- log(XY) = log(X) + log(Y)
- log(Y/X) = log(Y) - log(X)
- log(√X) = 1/2 log(X)

Quantifying differentially expression
Example

- Consider a case where we have observed two genes with fold changes of 2

- Is this worth reporting? Some journals require statistical significance. What does this mean?
Review of Statistical Inference

- Let \(Y - X \) be our measurement representing differential expression.
- What is the typical null hypothesis?
- For simplicity let us assume \(Y - X \) follows a normal distribution.
- \(Y - X \) may have a different distribution under the null hypothesis for different genes.
- More specifically the standard deviation \(\sigma \) of \(Y - X \) may be different.
- We could consider \((Y - X)/\sigma \) instead.
- But we do not know \(\sigma \).
- What is \(\sigma \)? Why is it not 0?
- How about taking samples and using the t-statistic?

Sample Summaries

Observations: \(X_1, \ldots, X_M \) \(Y_1, \ldots, Y_N \)

Averages: \(\bar{X} = \frac{1}{M} \sum_{i=1}^{M} X_i \) \(\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i \)

SD\(^2\) or variances:
\(s_X^2 = \frac{1}{M-1} \sum_{i=1}^{M} (X_i - \bar{X})^2 \) \(s_Y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})^2 \)

The t-statistic

\[
t - \text{statistic:} \quad \frac{\bar{Y} - \bar{X}}{\sqrt{\frac{s_Y^2}{N} + \frac{s_X^2}{M}}}\]
Properties of t-statistic

- If the number of replicates is very large the t-statistic is normally distributed with mean 0 and SD of 1.
- If the observed data is normally distributed then the t-statistic follows a t distribution regardless of sample size.
- We can then compute probability that t-statistic is as extreme or more when null hypothesis is true.
- Where does probability come from?
- We will see that using the t-statistic is not a good strategy for microarray data when N is small.

Inference of Ranking

- Are we really interested in inference?
- Sometimes all we are after is a list of candidate genes.
- If we are just ranking should we still consider variance?

Some useful plots
A 45° rotation highlights a problem

This is referred to as MAplot

Experiments with replicates

• If we are interested in genes with over-all large fold changes why not look at average (log) fold changes?
• Experience has shown that one usually wants to stratify by over-all expression
• We can make averaged MA plots:
 – M = difference in average log intensities and
 – A = average of log intensities
Should we consider gene-specific variance?
How do we summarize?

- Seems that we should consider variance even if not interested in inference
- The t-test is the most used summary of effect size and within population variation

Another useful plot

- The volcano plot shows, for a particular test, negative log p-value against the effect size (M)

MA and volcano
Remember these?

Estimating the variance
- If different genes (or probes) have different variation then it is not a good idea to use average log ratios even if we do not care about significance
- Under a random model we need to estimate the SE
- The t-test divides by SE
- But with few replicates, estimates of SE are not stable
- This explains why t-test is not powerful
- There are many proposals for estimating variation
- Many borrow strength across genes
- Empirical Bayesian Approaches are popular
- SAM, an ad-hoc procedure, is even more popular
- Many are what some call “moderated” t-tests
- More in later lecture

One final problem
- Say we are interested in statistical inference, we need to define statistical significance. If we are ranking we may need to define a cut-off that defines interesting enough
- The naïve answer to determining a cut-off is the p-values. Are they appropriate?
- Test for each gene null hypothesis: no differential expression.
- Notice that if you have look at 10,000 genes for which the null is true you expect to see 500 attain p-values of 0.05
- This is called the multiple comparison problem. Statisticians fight about it. But not about the above.
- Main message: p-values can’t be interpreted in the usual way
- A popular solution is to report FDR instead.
The Multiple Comparison Problem

What do we do?
- Adjusted p-values
- List of genes along with FDR
- Bayesian inference
- Forget about inference: use EDA
- We may talk about this in detail in another lecture

Multiple Hypothesis Testing
- What happens if we call all genes significant with p-values ≤ 0.05, for example?

<table>
<thead>
<tr>
<th></th>
<th>Called Significant</th>
<th>Not Called Significant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null True</td>
<td>(V)</td>
<td>(m_0 - V)</td>
<td>(m_0)</td>
</tr>
<tr>
<td>Altern. True</td>
<td>(S)</td>
<td>(m_s - S)</td>
<td>(m_s)</td>
</tr>
<tr>
<td>Total</td>
<td>(R)</td>
<td>(m - R)</td>
<td>(m)</td>
</tr>
</tbody>
</table>
Error Rates

- **Per comparison error rate** (PCER): the expected value of the number of Type I errors over the number of hypotheses
 \[\text{PCER} = \frac{E(V)}{m} \]

- **Per family error rate** (PFER): the expected number of Type I errors
 \[\text{PFER} = E(V) \]

- **Family-wise error rate** (FWER): the probability of at least one Type I error
 \[\text{FWER} = \Pr(V \geq 1) \]

- **False discovery rate** (FDR): rate that false discoveries occur
 \[\text{FDR} = \frac{E(V/R; R>0)}{E(V/R | R>0) \Pr(R>0)} = E(V/R | R>0) \Pr(R>0) \]

- **Positive false discovery rate** (pFDR): rate that discoveries are false
 \[\text{pFDR} = E(V/R | R>0) \]

- More later.