This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Neurodevelopment in the First Decade of Life

Robert Wm Blum MD, MPH, PhD
Johns Hopkins University
Section A

Overview
Features of Development

- Developmental milestone:
 - Attainment of a skill that typically develops sequentially and is a function of maturation

- Streams of development include:
 - Motor
 - Cognitive
 - Language
 - Social
 - Emotional/affective
The Two Cell Types of the Brain

- Neurons
- Myelin
The Structure of the Brain

- Cell body
- Axon (one)
- Dendrites (many)
- Synapses
The Structure of a Neuron
Formation of the Brain Starts at Day 16 of Fetal Life

- The outermost of three layers of the embryo will become the brain through a process called **neural induction**
 - This is referred to as the **neural plate**

- The plate then buckles, folds and becomes a tube through a process called **neurolation**

- One end of the tube becomes the brain and the other the spinal cord
Buckling

3 weeks
4 weeks
5 weeks
7 weeks
11 weeks

4 months
6 months
8 months
9 months
Brain Development

- Brain cells (neurons) **proliferate** at an exponential rate and travel to their final place in the brain through **migration**

- Proliferation is both **symmetric** (one cell divides to become two identical cells) from about day 22 to 49 and **asymmetric** (one cell replicates but the next cell does not) a process that goes from week 7 to week 18
Migration: the process by which brain cells travel to their final location

- Starts at about week 8 of gestation and ends at about week 18 of postnatal life
- This process results in the formation of the 6 layers of the adult brain
- Migration is from inside out (e.g., the inner cortex is formed first; the outer cortex last)
First the ventricle area (where proliferation starts and migration begins) sends cells to the areas of the neural tube forming the:
- Prosencephalon (forebrain)
- Mesencephalon (midbrain)
- Rhombencephalon (hindbrain)

The forebrain and hindbrain split again but not the midbrain.
Evolution of Single Neural Plate

Embryonic day 6
- Neural plate
- Wnt, RA, FGFs

Embryonic day 7
- Neural plate
- Anterior visceral endoderm
- Dickkopf, Cerberus

Embryonic day 8
- Neural plate
- Anterior visceral endoderm
- Wnt
- TLC
- Forebrain
- Spinal cord
- Midbrain & Hindbrain

Adapted by CTLT from Nature Reviews, Neuroscience.
The process of enlargement causes the brain to buckle and by about 7 months takes on the shape of an adult brain.
Axons, Dendrites, and Synapses

- A single long axon grows in response to environmental stimuli (material between cells) and surface materials on other nerve cells.

- Dendrites grow and reach out in many directions in response to electrical activity, chemical environment, and incoming axons.
The Structure of a Neuron

- Dendrites
- Microtubule Neurofibrils
- Neurotransmitter Receptor
- Synapse (Axosomatic)
- Synaptic vesicles
- Synapse (Axodendritic)
- Axon hillock
- Axon
- Nucleus (Schwann cell)
- Microfilament
- Microtubule
- Myelin Sheath
- Node of Ranvier
- Rough ER (Nissl body)
- Polyniosomes
- Ribosomes
- Golgi apparatus
- Nucleus
- Nucleolus
- Membrane
- Mitochondrion

Public Domain
Factors that Affect Axonal Growth

- Anoxia
- Malnutrition
- Toxins
- Genetic abnormalities
- Scarring

Axons that are damaged or do not grow initially tend not to re-grow
Synapses

- Generally connect axons and dendrites

- Two forms: **electrical** and **chemical**

- Chemical synapses send electrical impulses from an axon to dendrite through release of neurotransmitters (e.g., serotonin)

- Two mechanisms of synapse formation: genetic and environmental

- Strength of the chemical connection depends on use
Synapses

- Generally connect axons and dendrites
- Two forms: electrical and chemical
 - Chemical synapses send electrical impulses from an axon to dendrite through release of neurotransmitters (e.g., serotonin)
- Two mechanisms of synapse formation: genetic and environmental
- Strength of the chemical connection depends on use
Synaptic Gap

Source: http://commons.wikimedia.org/wiki/File:Neuronal_Synapse.jpg. Creative Commons BY-SA.
Long-Term Potentiation

- A memory model brought about by increased synaptic strength
- Stimulated by sustained, rapid activity in neuronal circuits
- Involves newly acquired information (e.g., learning a new phone number)
Long-Term Potentiation

- A memory model brought about by increased synaptic strength
- Stimulated by sustained, rapid activity in neuronal circuits
- Involves newly acquired information (e.g., learning a new phone number)
Dendritic Proliferation

Synaptic Pruning and Myelination

- Improved brain function
 - Increased efficiency of local computations
 - Increased speed of neuronal transmission
Myelin

- The “white matter”
- Fatty material
 - Improves speed of electrical transport; works as insulation of axons
 - May also improve neuronal functioning
 - Myelination occurs in different parts of the brain at different stages