This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike License](http://creativecommons.org/licenses/by-nc-sa/3.0/). Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.

Copyright 2006, The Johns Hopkins University and Lawrence J. Cheskin. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided “AS IS”; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.
Lecture 4: Metabolism and Dieting

Critical Analysis of Popular Diets and Supplements

Instructor: Lawrence J. Cheskin, M.D.
Associate Professor, International Health
Director, Johns Hopkins Weight Management Center
Components of Metabolic Rate

- **Terminology:**
 - Basal metabolic rate (BMR) or Resting metabolic rate (RMR or REE)
 - Thermic effect of feeding (TEF)
 - Activity energy expenditure (EE_{act})
 - Total daily energy expenditure (TEE/TDEE)
Resting Metabolic Rate

What comprises RMR?
- Organs with high energy needs total only 5% of body weight, yet use 58% of REE:
 - liver = 21% of total RMR; brain 20%; heart 9%; kidneys 8% (heart and kidneys=highest EE/g)
- Muscle EE is only 3% of heart’s g/g at rest, but in total comprises 22% of RMR at rest
- Adipose tissue is even lower g/g, and is always at rest: 4% of RMR in lean, up to 10+% in obese
- Remaining 16% is from skin, GI, lungs, bones, etc
Gender, Age, Body Composition

- Women have lower RMR than men of same weight and height
- RMR of child > adult > senior
- % body lean determines RMR more than % body fat
RMR Differences

- Key point: obese often have higher RMRs than expected because they have excess muscle as well as excess fat.

- Of note: even after adjusting for differences in muscle, fat-free mass (FFM), and VO$_2$-max, women have 3-10% lower RMR than men.

- Causes are unclear: ? hormonal influence; diffs in muscle fiber type, Na-K-ATPase activity, neoglucogenesis activity, SympNS, core temp.
Hormonal influences on RMR

- Catecholamines (adrenaline/epinephrine, NE) increase RMR by ~20%, via muscle, heart adrenergic receptor stimulation
- Thyroxine (T₄) and thyronine (T₃) can increase RMR by up to 80% (days delay)
- Leptin also can increase RMR and EE_{act}
Implications of Low/High RMR

- In Pima Indians (genetically prone to obesity and type-2 diabetes):
 - Risk of weight gain is much greater in those with low-normal RMR c/w high-normal RMR

- Genetic influences on RMR: present
 - Adjusted for weight, the 95% CI in populations of normal adults spans +/- 250 kcal/d
Thermic Effect of Feeding (TEF)-1

- Also called DIT (diet-induced thermogenesis)
- It is the energy cost of digestion, absorption, processing and storage of nutrients
- Comprises about 10% of TEE in sedentary
- There are no significant age or gender diffs
- But obese seem to have lower TEFs
Thermic Effect of Feeding (TEF)-2

- TEF increases with amount eaten, meal frequency
- TEF can be determined and varies by macronutrient: macronutrient-specific TEFs (by % of energy in the food used as TEF when the food is completely metabolized):
 - CHO: glucose 8%, starch slightly higher
 - Protein 20-30%
 - Fat 2%
 - Ethanol 22%
Energy Cost of Interconversion and Storage

- All macronutrients can be interconverted
- If it’s not used for fuel, conversion of CHO to fat burns/wastes 23% of the ATP energy in the CHO
- Storing fat burns only 3% of the energy in the fat
Measurement of Metabolism

- Prediction equations
- Indirect calorimetry
- Direct calorimetry
- Doubly-labeled water
- Thyroid hormone levels (T_4, TSH)
Prediction equations
Indirect calorimetry (IC)

- Most accessible measure of actual physiology of an individual; usually performed after overnight fast
- Can determine RMR, TEF, EE_{act}
- Immediate response, as O_2 is not stored

Based on the observation that burning a mixed fuel (absorbed food) produces 20.3 kJ of E for every liter of O_2 consumed at STP (dry):

\[M = 20.3 \text{ kJ/L} \times (V_{O_2 \max}) \text{ in L/min} \]

Where M = metabolic rate, in kJ/min
Indirect Calorimetry-2

- Only O2 consumption is needed to calculate EE, but IC also measures CO2 being produced.
- IC can thus determine fuel mix being burned because specific fuels have different ratios of CO2 produced to O2 consumed (the respiratory quotient, or RQ):

<table>
<thead>
<tr>
<th></th>
<th>O2 used</th>
<th>CO2 produced</th>
<th>RQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHO</td>
<td>0.83L</td>
<td>0.83L</td>
<td>1.00</td>
</tr>
<tr>
<td>Protein</td>
<td>1.01L</td>
<td>0.84L</td>
<td>0.83</td>
</tr>
<tr>
<td>Fat</td>
<td>2.02L</td>
<td>1.43L</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Direct calorimetry (DC)

- Measures heat losses, not heat produced
- DC measures heat loss via radiation, conduction, convection, and evaporation in a specially-constructed, insulated room
- Heat production begins ~20 min into a meal
- Heat loss begins later, so body temp rises then falls after a meal
- At steady state, heat production = heat loss
Doubly-Labeled Water (DL H$_2$O)

- Uses the non-radioactive isotope 2H18O
- 18O rapidly exchanges between the O in water and the O in CO$_2$ (courtesy of carbonic anhydrase)
- CO$_2$ is exhaled, so the concentration of the body’s 18O declines, but the other label (2H) is stuck in H$_2$O
- The difference in the rate of turnover (loss) of the 2 labeled forms of H$_2$O (doubly vs singly-labeled) is thus a measure of the production rate for CO$_2$
- This loss is gauged by taking a saliva sample at day 14 and measuring the ratio of water isotopes
- Thus, DL H$_2$O measures EE over the prior 14 days, not day-to-day EE
Thyroid Hormone Levels (T4, TSH)

- Typical of the endocrine system, there are multiple levels of control of thyroid hormones
- T3 is the final active hormone
- T4 is converted to T3
- The pituitary gland produces TSH (thyroid-stimulating hormone) which regulates T4/T3
- The hypothalamus produces TRH (thyroid releasing hormone) which regulates TSH
- We measure TSH mostly: a high TSH = slow thyroid function, hypothyroidism (high because the pituitary attempts to flog a sluggish thyroid gland)
Effect of weight loss on TEE

- With weight loss, **RMR** declines in proportion to the decline in fat-free mass
 - This decline can be blunted by preserving muscle mass through resistance training
- **TEF** declines during a diet (less food eaten)
 - TEF recovers once diet returns to normal
- **EE_{act}** declines as E cost of movement declines
 - This decline can be blunted by increasing activity level