Lecture 5:
Physical Activity and Dieting

Critical Analysis of Popular Diets and Supplements

Instructor: Lawrence J. Cheskin, M.D.
Associate Professor, International Health
Director, Johns Hopkins Weight Management Center
Body Fat/Composition Measurements

- Underwater weighing: Archimedes principle
- Skinfold measurements / anthropometry
- Bioimpedance (BIA)
- Computerized tomography (CT)
- Magnetic resonance imaging (MRI)
- Dual-energy x-ray accelerography (DEXA)
Pact vs Energy Expenditure

- **Physical activity** (Pact) is measured in watts of work actually performed.
- **Energy expenditure** (EE) is the kcal or kJ of energy burned, either in the performance of work, or less efficiently work-productive (shivering, moving ions up energy gradients, etc.).
- Different types of physical activity may affect substrate balance differently for the same amount of work accomplished (sprint 1/10 mi vs walk it):
 - The sprint burns lactate and CHO.
 - The walk burns primarily fat.
 - The EE of the sprint is > for the same work performed.
Measures of P-act : 1

- The mean adult RMR is 3.5ml O2/kg/min (or about 1.0 kcal/kg/hr)
- With increasing levels of p-act, rate of O2 consumption / heat produced increases
- Multiples of a person’s RMR are called “metabolics” or “mets” and denote intensity of p-act being performed: a short-term measure
 - 7 mets would be 7x3.5=24.5ml O2/kg/min; or, for a 70kg adult, a burn rate of 70 kcal/hr above RMR
 - 7 mets is about 70% of VO2 max, or a 5mph run
- A slow walk is 2 mets
Measures of P-act : 2

- Physical activity level (PAL) = TEE/RMR
- PAL is a daily average, not a measure of intensity of an activity like mets
- PAL is about 1.4 - 1.5 for sedentary adults
- Extreme athletes or pyramid builders PAL may be 3.5 – 4.5
- DL H₂O can accurately gauge PAL over 14d
 - Also accelerometers, HR recording, logs/scales
Components of EE\text{act}

- ADL (walking, stairs, housework, bathing, etc)
- Nonproductive activities (fidgeting, shivering)
- NEAT (non-exercise activity thermogenesis)
- Planned exercise
 - Ravussin highlighted the large variability in non-exercise activity between people with a radar study in a closed room with no exercise equip’t:
 - Range of 830- 4180 kJ/d found
Determinants of Level of P-act

- **Age:** P-act declines in both men and women
 - Data shows worse *relative* declines in P-act over time in young
- **Gender:** US adult men and women about =
 - Canada, UK men 1.5 – 3x women
 - US boys > girls
- **Body comp and BMI:** PAL of obese is lower, but, because of cost of wt bearing, EEact may be similar to lean
- **Genetics:** EEact shows 29-62% heritability in family and twin studies
- **Education:** US- college grads 2-3x more likely to be active in leisure physical activities
- **Seasonal variation:** Canada- summer = 2x winter time spent in physical activity
Determinants of E cost of P-act
(work efficiency: work/E-cost)

○ What could make work efficiency vary?
 ● Energy cost of muscle per twitch
 ● Recovery time (oxidative capacity: VO2 max)
 ● Training / technique (eg, swimming)
 ● Gender: women are more E efficient (less ms.)
 ● BMI: obese in most studies have similar efficiency

○ Why is work efficiency important?
 ● While of survival value, high efficiency could predispose to weight gain or regain
 ● In fact, some studies find increased efficiency in “post-obese” (Geissler, 15% c/w lean)
The post-Exercise Period

- Is there a post-exercise “burn” (excess EE)?
 - Yes- there is a period when EE has not yet fallen to pre-exercise levels
 - Varies from minutes to all day (for vigorous, prolonged exercise)
 - Adds up to a modest (3- 15%) increase in TEE of the activity
 - Mechanism is unknown
Effects of Training on RMR

- Significant effect only in vigorous, daily exercisers
- Probably related to increased FFM and “burn”
- Increasing one’s VO\textsubscript{2 max} in and of itself does not increase RMR, TF, EE\textsubscript{act}, TEE after adjustments for change in body comp are made
Effects of exercise on substrate oxidation

- How does one study this?
 - Measure RQ by IC during exercise c/w rest

- Findings:
 - During low-intensity P-act (20% VO2max), RQ = 0.8 (62% fat ox’n, 38% CHO and muscle)
 - slow (type I) muscle fibers are used most, and they burn FFAs
 - During high intensity P-act (80% VO2max), RQ = 0.9 (79% CHO and muscle, 21% fat ox’n)
 - fast (type II) muscle fibers are used most, and they burn glycogen

- Does this mean low intensity exercise is best for wt loss?
 - Yes and no: yes by % loss from fat, but no because burn is so slow that a small absolute amount will be lost c/w vigorous ex
Effects of Exercise on Substrate Oxidation- 2

- Both exercise intensity and duration affect fuel burned.
- Protein oxidation is normally <10% of fuel during all but long-duration exercise.
 - At 100% VO$_{2\text{max}}$, (e.g., sprint run) anaerobic use of muscle glycogen predominates, and lactic acidosis, soreness, and fatigue ensue (later, fat oxidation occurs to recover).
 - At submax effort (75+% VO$_{2\text{max}}$), mix of aerobic and anaerobic source (CHO and fat).
 - As intensity decreases further, aerobic source becomes 100% and % fat oxidation increases.
Whence Comes the Fuel Burned During Exercise?

- Free fatty acids (FFA) are released from both adipose tissue and intra-muscle fat stores.
- CHO are derived from glycogenolysis in both muscle and liver.
- Intramuscular fuel is used first; after 30 min of ex, circulating nutrients (glucose and then FFA) used.
- The circulating glucose derives first from liver glycogenolysis, later liver gluconeogenesis, too.
- Circulating FFA derives from lipolysis in adipose tissue.
Exerciser Characteristics: Training Status (I)

- \(\text{VO}_2\text{max} \) is a measure of aerobic work capacity or fitness
- As noted, training does not change E cost of Pact
- It does alter fuel source: use fat at a higher intensity of exercise when trained because at any given workload, intensity is effectively lower
- It also increases the proportion of slow, fat ox’g, type I muscle fibers
Exerciser characteristics: Age, gender and BMI

- One study suggests ability to oxidize fat may decrease with aging
- Some but not all studies find women:
 - Oxidize proportionately more fat, esp. during luteal phase vs follicular phase
 - Protein ox is probably lower during exercise
- Obese: mixed findings
 - One study found they ox less fat during exercise
 - Another found no diff in RQ bet lean and obese exercising at equivalent workloads
Role of P-act in obesity etiology

- Decreasing P-act will lead to wt gain unless EI is decreased by the same amount.
- Increasing P-act will cause wt loss unless EI is increased to compensate.
 - Degree of compensation is highest in young males, lowest in obese middle-aged females.
- P-act also influences fat stores.
 - CHO and protein stores are limited and tightly regulated, so changes in EE_{act} tend to be reflected in fat stores.
Is Low EE a Risk Factor for Obesity?

- Few historical records of activity levels, but in UK, EI↓ by 500 kcal/d 1970-1990, but BMI↑ by 1.0 kg/m²; thus P-act must have↓ by >500 kcal/d, but there are no data

- In USA: inverse correlation between self-reported P-act and BMI
 - True for men, women, AA, Latino, white, etc.
 - Confirmed by DLH₂O studies and 2/3 longitudinal studies (2-10y duration) showing BMI/P-act at f/u
Obesity and Types of P-act

- Moderate intensity exercise burns more fat than high, but high intensity exercisers have the lowest BMIs.
- Both aerobic and resistance exercise are helpful in weight control.
- Short bouts of exercise (3x10min) are as effective for wt loss as long (1x30min) if total EE_{act} is equal (Jakicic).
How Much Exercise is Needed for Weight Control?

- Most guidelines have called for 20-30 min of moderate-intensity exercise most, preferably all days.
- Recent IOM guideline finds that 60 min daily exercise may be needed just to maintain weight.
- Reduction in time at sedentary activities can also increase EEact and TEE.
- At least 2 studies have found that kids who watch a lot of TV are more likely to be obese.
- “Lifestyle” activities (taking stairs, parking farther away, etc) can add up to same EEact as formal exercise.
EEact and Body Fat Distribution

- Evidence from 2 large clinical trials:
 - 1 found a negative relationship between P-act and waist circumference (EFDS)
 - 1 same (WHR) in white and AA men and AA women (but not white women) (CARDIA)

- Why does P-act affect fat distribution?
 - Unclear- perhaps all weight loss preferentially reduces visceral adipose tissue
 - Clear- there are gender, age, hereditary diffs: e.g., men tend to lose more VAT, young esp.