This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.

Copyright 2006, The Johns Hopkins University and W. Henry Mosley. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided “AS IS”; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.
Contraceptive Technologies: Continuation and Failure Rates

W. Henry Mosley

A. Couple-Years of Protection (CYP)

1. Definition: "A composite person-time measure of the total amount of protection conferred by all methods to all acceptors practicing for any length of time." (Wishik and Chen, 1973)

2. Data sources and utility

3. Strengths and weaknesses

B. Contraceptive Continuation and Prevalence

1. Relationship between fertility and contraceptive prevalence from population surveys

2. Relationship of acceptance and continuation to prevalence
 a. Basic formula from epidemiology:

 \[P = I \times D \]

 where:
 - \(P \) = prevalence
 - \(I \) = incidence /year
 - \(D \) = duration in years

 b. The contraceptive prevalence rate (C) is a function of:

 incidence rate = acceptors /year (A)
 duration = average "life expectancy" of contraceptive use (D)

 So: \[C = A \times D \] (1)
3. Average life of contraceptive use (D) is a function of the annual dropout rate (r). If there is a constant annual dropout rate, then the proportion (P) of acceptors still practicing at time (t) is:

a. \(P_t = e^{-rt} \) \hspace{1cm} (2)

where \(e \) = base of the natural logarithm.

If there are some immediate dropouts, then:

\[P_t = ae^{-rt} \] \hspace{1cm} (3)

where: 1-a = proportion dropping out immediately, and

\(a = \) proportion remaining after immediate dropout.

Using calculus, the "life expectancy" (or average duration) of contraceptive use becomes:

\[D = \frac{1}{r} \ (\text{with no immediate dropouts}) \] \hspace{1cm} (4)

\[D = \frac{a}{r} \ (\text{with } 1-a \ \text{immediate dropouts}) \] \hspace{1cm} (5)

4. In a steady state situation contraceptive prevalence (C) can be related to acceptance (incidence) rate (A) and drop-out rate (r) as:

\[C = A \left(\frac{1}{r} \right) \] \hspace{1cm} (6)

or, with immediate dropout:

\[C = A \left(\frac{a}{r} \right) \] \hspace{1cm} (7)
C. Contraceptive Failure

1. Definitions of contraceptive "efficacy"

a. Effectiveness \((e) \) = proportion (percent) reduction in the monthly probability of (live-birth) conception by contraception

 b. Failure rate \((f) \) = proportion (percent) of contracepting women conceiving in a specified interval

 \[f = c \ (1-e) \] \hspace{1cm} (8)

 where:

 \(f \) = monthly failure rate

 \(c \) = monthly probability of conception with unprotected intercourse (fecundability

 \(e \) = effectiveness

 c. Annual failure rate \((F) \) may be approximated as 12 x the monthly failure rate:

 \[F \sim 12f = 12c \ (1-e) \] \hspace{1cm} (9)

 Note: \(F \) does not equal \((1-e) \), that is, effectiveness \((e) \) does not equal \((1-F) \)

 But: if fecundability \((c) = 0.0833 \) or 1/12,

 \[F \sim 12f = 12 \ (1/12) \ (1-e) = (1-e). \] \hspace{1cm} (10)

 Therefore: Because fecundability is close to 1/12 in healthy women in the mid reproductive years, the observed annual failure rate is taken as a measure of effectiveness, e.g. if 5% of contracepting women conceive a live birth in 1 year \((F=0.05) \), the contraceptive effectiveness \((e) \) is estimated at 0.95 or 95% \((e=0.95) \).
D. **Covariates (determinants) of failure**

 a. age and marital status
 b. education and cultural background
 c. concomitant use of other methods
 d. motivation to delay versus prevent
 e. gravidity
 f. previous failures
 g. method

E. **Significance of Contraceptive Failure for Program Strategy**

1. Cumulative risk of failure by duration of use

2. Relative significance of contraceptive failure in high fertility (low contraception prevalence) versus low fertility (high prevalence) populations.
References

Required reading:

Recommended Readings:

Other:

