Section D

System Architecture
System Architecture

- **Environmental Stewardship & Public Health Actions**
 - Track health, disease, and exposure risk/trends
 - Detect & evaluate risk of exposure to env. hazards
 - Develop & evaluate public health & environmental stewardship policies & programs

- **Exposure Detection & Risk Analysis**
 - Develop rapid-response mechanisms to investigate outbreaks and clusters
 - Develop prevention guidelines/standards
 - Generate hypotheses and initiate applied research

- **Integrated Environmental Health Indicators Data Warehouse**

- **Data Integration Transformation & Geocoding**

- **Environmental Hazards, Ecology and Disease Data Collection Systems**
 - Hazardous Substances-Emergency Event Surveillance
 - Toxic Release Inventory

- **GIS/Spacial Epidemiology**
 - Natural
 - Accidental
 - Intentional

- **Risk Analysis**
 - Exposure

- **Data Mining & Knowledge Discovery**

- **Statistical Models**

- **Environmental Hazard**
 - Hazardous Material Profile
 - Exposure Profile
 - Biomonitoring

- **Population Demography**
 - Population
 - Ecological Indicators
 - Disease Indicators

- **Health Outcomes**

- **Metadata**
 - Data Standardization
 - Geocoding
 - Data Linking/Integration
 - Data Quality Assurance

- **Hazards Tracking**
 - Hazardous Substances-Emergency Event Surveillance
 - Toxic Release Inventory

- **Exposure Tracking**
 - Human Exposure to Environments
 - Chemicals
 - Toxic Exposure Surveillance

- **Ecological Tracking**
 - Marine Life
 - Animals
 - Plants

- **Population Demographics**
 - Census Data

- **Disease Tracking**
 - Hospital Discharge
 - Birth Defects
 - BRFSS
 - Cancer Registries
 - Health Surveys
 - Vital Statistics

*Based on risk assessment and national priorities.
Adapted by CTIT from Nabil Issa, CDC/NCEH, Brussels, Belgium June 2002.
The **top layer** of the diagram depicts environmental stewardship functions aimed to solve environmental health problems (knowledge)
- That is, system goals

The **middle layer** shows the relationships between data on hazards, exposure, outcomes, and affected population
- This data is manipulated/analyzed/displayed (that is, statistically analyzed, mined, GIS-based) and presented as information

The **bottom layer** of the EPHTN architecture shows Data from data sources on hazards, exposure, disease outcomes, and affected population
Requirements Elicitation Includes:

- Specifying goals
- Specifying actors (business and technical)
- Specifying functional and non-functional requirements
- Specifying use cases
- Developing models/diagrams
 - Use case, workflow, and dataflow
- Specifying high-level system architecture
- Specifying hardware and software requirements
- Specifying system evaluation plan
- Specifying project timeline and documentation
Requirements Elicitation Includes:

- Specifying goals
- Specifying actors (business and technical)
- Specifying functional and non-functional requirements
- Specifying use cases
- Developing models/diagrams
 - Use case, workflow, and dataflow
- Specifying high-level system architecture
- Specifying hardware and software requirements
- Specifying system evaluation plan
- Specifying project timeline and documentation
During **testing**, developers find differences between the system and its model by executing the system (or parts of it) with sample input data set.

The **goal** of testing is to discover as many faults as possible so that they can be repaired before the delivery of the system.

During **unit testing**, developers compare the object design model with each object and subsystem.

During **integration testing**, combination of subsystems are integrated together and compared with the system design model.

System tests are planned during requirement elicitation and analysis activities; integration tests are planned during system design activity.
Four Levels of Information System Evaluation

- Level I: technical level—*does system work?*
 - Does system support data entry (input)?
 - Can system generate reports (output)?

- Level II: usability level—*does the user like the system?*
 - Does user like screen layout, color scheme, font size (input)?
 - Does user like the report layout, font size (output)?

- Level III: functional level—*does system support user functions?*
 - Does system support the user workflow and dataflow?

- Level IV: knowledge level—*does system support defined goals?*
 - Does system support user expectations in solving the problem?
Pilot Testing

- The first three levels of system evaluation are conducted during **pilot testing**—a step that follows the system development phase prior to the full implementation.

- System faults detected during the pilot testing are documented in the *Pilot Testing Report*, corrected and tested again; and documented in the *Pilot Testing Report* again.

- Accepted by user after pilot testing, the system is ready to be implemented.
Requirements Elicitation Includes:

- Specifying goals
- Specifying actors (business and technical)
- Specifying functional and non-functional requirements
- Specifying use cases
- Developing models/diagrams
 - Use case, workflow, and dataflow
- Specifying high-level system architecture
- Specifying hardware and software requirements
- Specifying system evaluation plan
- Specifying project timeline and documentation
Information System Development Timeline

- Information system is a commercial product; as any commercial product, it has a strict timeline in which it is delivered as follows:
 - Requirement analysis and design: two to three months
 - Development: six months
 - Pilot testing - during the ninth month
 - Implementation: 10-24 months

- If you do not have working system in two years:
 - You incorrectly specified the requirements
 - You chose wrong vendor

- Next slide shows the example of the information system development timeline and deliverables by system design phase
Timeline and Deliverables

Requirement elicitation and design
- Requirement Analysis Document (RAD)

System development
- System Development Specification Document

Pilot testing
- Pilot Testing Protocol and Report

System implementation
- System Documentation Prototype

System evaluation
- System Evaluation Protocol and Report

System operation
- System Documentation and Operational Manual