Information Exchange Standards

Mike Henderson
Principal Consultant, Eastern Informatics, Inc.
Co-Chair, HL7 Education Work Group
Section A

DL7, DICOM, and Structured Documents
Topics

- Standards used in integration
- HL7 overview and domains
- DICOM overview and domains
- The IHE initiative
- Messaging architectures and examples
Standards Used in Integration

- **Messaging standards**
 - HL7
 - Version 2 (ad hoc)
 - Version 3 (model-based)
 - DICOM
 - IETF, ITU-T, NTP, ASTM, W3C, etc.

- **Controlled vocabulary standards**
 - SNOMED, ICD-10, CPT-4, Read, etc.

- **Architecture and communications standards**
 - ISO OSI, TCP/IP, etc.
HL7 Overview

- HL7 definition and purpose
- Brief history
- Domains
How HL7 Began

- **Precursor: ASTM E1238 standard**
 - Standardized in mid 1980s
 - Dr. Clem McDonald, Regenstrief Institute
 - Pathology results

- **HL7’s first meeting**
 - University of Pennsylvania, March 1987
 - Dr. Sam Schultz
 - Initial domain specifications
 - Message formats: delimited vs. tagged
Why Health Level Seven?
- Rests atop the Application layer of the ISO Open System Interconnect model
- There is no HL1-HL6
- Lower layers and handshaking addressed outside the normative standard
Mission
- To provide standards for the exchange, management, and integration of data that support clinical patient care and the management, delivery, and evaluation of health care services

Primary goal
- To provide standards for the exchange of data among health care computer applications that eliminate or substantially reduce the custom interface programming and program maintenance that may otherwise be required
Objectives

- The standard should support exchanges among systems implemented in the widest variety of technical environments
- Immediate transfer of single transactions should be supported along with file transfers of multiple transactions
- The greatest possible degree of standardization should be achieved, consistent with site variations in the usage and format of certain data elements
- The standard must support evolutionary growth as new requirements are recognized
- The standard should be built upon the experience of existing production protocols and accepted industry-wide standard protocols
Objectives

- While it is both useful and pertinent to focus on information systems within hospitals, the long-term goal should be to define formats and protocols for computer applications in all health care environments.

- The very nature of the diverse business processes that exist within the health care delivery system precluded the immediate development either of a universal process or of a data model:
 - No a priori assumptions about the architecture of health care information systems
 - No attempt to resolve architectural differences between health care information systems
 - Version 2 not a true “plug and play” interface standard
■ Objectives
 - Infrastructure supports a consensus balloting process in order to facilitate quick deployment of the standard
 - Cooperation with other related health care standards is a priority
 ▶ DICOM
 ▶ ASC X12
 ▶ ASTM
 ▶ IEEE/MEDIX
 ▶ NCPDP
 - Conformance profiling mechanism (Chapter 2B)
How Messages Are Structured in HL7 Version 2

- Messages are made up of segments
- Each segment contains one or more fields of defined data types
- Fields can contain components and subcomponents
- Using default encoding, delimiters are specified in the MSH (message header) segment
How Messages Are Structured in HL7 Version 2

MSH|^~\&|MegaReg|UABHospC|ImgOrdMgr|UABImgCtr|20070529090131-0500||ADT^A01|01052901|P|2.5

EVN||200705290901||200705290900

PID||56782445^^^UAReg^PI~999855750^^^USSSA^SS||KLEINSAMPLE^BARRY^Q^JR||19620910|M||2028-9^^HL70005^RA99113^^XYZ|260 GOODWIN CREST DRIVE^^BIRMINGHAM^AL^35209^^H|||0105I30001^^^99DEF^AN

PV1||I|W^389^1^UABH^^^^3|||12345^MORGAN^REX^J^^^^MD^0010^UAMC^L|||67890^GRAINGER^LUCY^X^^^^MD^0010^UAMC^L|MED|||A0|||13579^POTTER^SHERMAN^T^^^^MD^0010^UAMC^L|MED|||A0|||200705290900

OBX|1|NM|^Body Height||1.80|m^Meter^ISO+|||F

OBX|2|NM|^Body Weight||79|kg^Kilogram^ISO+|||F

AL1|1||^ASPIRIN
HL7 Standards Development Process (V2)

- Proposals from users submitted to HL7 Web site
- Assigned to appropriate work groups for discussion
- Participants: volunteers—users, vendors, consultants, payers
 - Periodic t-cons/meetings out-of-cycle
- Work groups meet face to face three times annually at working group meetings
- Balloted for inclusion in omnibus revisions to HL7 V2 standard
 - Next revision: V2.8
HL7 Standards Development Process (V3)

- Basis: Reference Information Model (RIM)
 - Clinical Document Architecture based on subsets of RIM

- Proposals for model changes and additional artifacts submitted to appropriate work groups

- Participants: volunteers—users, vendors, consultants, payers

- Work groups meet face to-face three times annually at working group meetings
 - Periodic t-cons/meetings out-of-cycle

- Changes proposed by work group are harmonized with the model as a whole

- Balloted for inclusion in domain-specific incremental revisions to the V3 standard
A clinical document is a record of observations and other services with the following characteristics:

- Persistence
- Stewardship
- Potential for authentication
- Wholeness
- Human readability

CDA documents are encoded in Extensible Markup Language (XML)
Clinical Document Architecture (CDA)

- CDA documents derive their meaning from the RIM and use HL7 v3 data types

- A CDA document consists of a header and a body
 - **Header** is consistent across all clinical documents
 - It identifies and classifies the document, and provides information on the patient, provider, encounter, and authentication
 - **Body** contains narrative text/multimedia content (level 1), optionally augmented by coded equivalents (levels 2 and 3)
CDA Release 2 Information Model

Header

Body

Participants

Doc ID & Type

Context

Sections/Headings

Clinical Statements/Coded Entries

Extl Refs

HL7® Material included in this OpenCourseWare is for non-commercial use and is copyrighted by Health Level Seven® International. All Rights Reserved. Use of HL7 copyrighted materials for commercial purposes is limited to HL7 Members and is governed by HL7 International’s Intellectual Property Policy. HL7 and Health Level Seven are registered trademarks of Health Level Seven International Reg. U.S. Pat & TM Off.
Continuity of Care Document (CCD)

- Based on the HL7 Clinical Document Architecture, Release 2 (CDA) specification in accordance with requirements set forward in ASTM E2369-05 Standard Specification for Continuity of Care Record (CCR)

- Alternate implementation to the one specified in ASTM ADJE2369 for those institutions or organizations committed to implementation of the HL7 Clinical Document Architecture
Continuity of Care Document (CCD)

- Continuity of Care Record (CCR) is a core data set of the most relevant administrative, demographic, and clinical information facts about a patient’s health care, covering one or more health care encounters.

- CCD provides a means for one health care practitioner, system, or setting to aggregate all of the pertinent data about a patient and forward it to another practitioner, system, or setting to support the continuity of care.

- CCD is just one type of CDA document.
 - Other types of CDA documents can contain some of the same CCD sections—but different sections as well.
HITSP CDA Content Modules (C83)

- A library of sections that can be combined into various CDA document types

- A document type can include additional sections, even those not a part of it
 - A CCD could add a Reason for Referral section and still be a valid CCD
 - “HITSP Data Dictionary” describes the data elements and the constraints (optionality, repeatability, and value sets) for each data element in the structured data portions of C83
HITSP C32 (CCD Component)

- Describes the document content summarizing a consumer’s medical status for the purpose of information exchange.

- Content may include:
 - Administrative information (e.g., registration, demographics, insurance, etc.) and
 - Clinical information (problem list, medication list, allergies, test results, etc.)

- Defines content in order to promote interoperability between participating systems.

- Any given system creating or consuming the document may contain much more information than conveyed by the C32 specification.
CDA Narrative and Coded Info

- CDA structured body requires human-readable “Narrative Block,” all that is needed to reproduce the legally attested clinical content

- CDA allows optional machine-readable coded “Entries,” which drive automated processes

- Narrative may be flagged as derived from Entries
 - Textual rendering of coded entries’ content and contains no clinical content not derived from the entries

- General method for coding clinical statements is a hard, unsolved problem
 - CDA allows incremental improvement to amount of coded data without breaking the model
History of Present Illness

Henry Levin, the 7th, is a 67 year old male referred for asthma in his teens. He was hospitalized twice last year, been able to be weaned off steroids for the past several

Past Medical History

- Asthma
- Hypertension (see HTN.cda for details)
- Osteoarthritis, right knee

Medications

```xml
<title>Past Medical History</title>
- <text>
  - <list>
    - <item>
      <content ID="a1">Asthma</content>
    </item>
  + <item>
  + <item>
  </list>
</text>
- <entry>
  - <observation classCode="COND" moodCode="EVN">
    <code code="39154008">
      codeSystem="2.16.840.1.113883.6.96"
      codeSystemName="SNOMED CT" displayName="clinical diagnosis" />
    <effectiveTime value="1950" />
    - <value xsi:type="CD" code="195967001">
      codeSystem="2.16.840.1.113883.6.96"
      codeSystemName="SNOMED CT" displayName="Asthma" />
      - <originalText>
        <reference value="#a1" />
    </value>
  </observation>
```
DICOM Overview

- DICOM defined
- Brief history
- Domains
How DICOM Began

- Evolution of imaging in the 1970s
 - Introduction of digital diagnostic imaging modalities (e.g., computerized tomography)
 - Increasing use of computers in medical applications

- Joint committee formed in 1983
 - American College of Radiology (ACR)
 - National Electrical Manufacturers Association (NEMA)

- Version 1 released 1985

- Version 2 released 1988

- Version 3 released 2001
DICOM Defined (Formally)

- Promotes communication of digital image information regardless of device manufacturer
- Facilitates the development and expansion of picture archiving and communication systems (PACS) that can also interface with other systems of hospital information
- Allows the creation of diagnostic information data bases that can be interrogated by a wide variety of devices distributed geographically
DICOM Defined (Operationally)

- Facilitates interoperability of medical imaging equipment by specifying:
 - A set of protocols to be followed by devices claiming conformance to the standard
 - The syntax and semantics of commands and associated information which can be exchanged using these protocols
 - Information that must be supplied with an implementation for which conformance to the standard is claimed
DICOM Defined (Operationally)

Does not specify:
- The implementation details of any features of the standard on a device claiming conformance
- The overall set of features and functions to be expected from a system implemented by integrating a group of devices each claiming DICOM conformance
- A testing/validation procedure to assess an implementation’s conformance to the standard
DICOM Example: C-STORE Message—DICOM Part 7

Table 9.3-1: C-STORE-RQ MESSAGE FIELDS

<table>
<thead>
<tr>
<th>Message Field</th>
<th>Tag</th>
<th>VR</th>
<th>VM</th>
<th>Description of Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Group Length</td>
<td>(0000,0000)</td>
<td>UL</td>
<td>1</td>
<td>The even number of bytes from the end of the value field to the beginning of the next group.</td>
</tr>
<tr>
<td>Affected SOP Class UID</td>
<td>(0000,0002)</td>
<td>UI</td>
<td>1</td>
<td>SOP Class UID of the SOP Instance to be stored.</td>
</tr>
<tr>
<td>Command Field</td>
<td>(0000,0100)</td>
<td>US</td>
<td>1</td>
<td>This field distinguishes the DIMSE-C operation conveyed by this Message. The value of this field shall be set to 0001H for the C-STORE-RQ Message.</td>
</tr>
<tr>
<td>Message ID</td>
<td>(0000,0110)</td>
<td>US</td>
<td>1</td>
<td>Implementation-specific value. It distinguishes this Message from other Messages.</td>
</tr>
<tr>
<td>Priority</td>
<td>(0000,0700)</td>
<td>US</td>
<td>1</td>
<td>The priority shall be set to one of the following values: LOW = 0002H; MEDIUM = 0000H; HIGH = 0001H</td>
</tr>
<tr>
<td>Data Set Type</td>
<td>(0000,0800)</td>
<td>US</td>
<td>1</td>
<td>This field indicates that a Data Set is present in the Message. It shall be set to any value other than 0101H (Null).</td>
</tr>
<tr>
<td>Affected SOP Instance UID</td>
<td>(0000,1000)</td>
<td>UI</td>
<td>1</td>
<td>Contains the UID of the SOP Instance to be stored.</td>
</tr>
<tr>
<td>Move Originator Application Entity Title</td>
<td>(0000,1030)</td>
<td>AE</td>
<td>1</td>
<td>Contains the DICOM AE Title of the DICOM AE which invoked the C-MOVE operation from which this C-STORE sub-operation is being performed.</td>
</tr>
<tr>
<td>Move Originator Message ID</td>
<td>(0000,1031)</td>
<td>US</td>
<td>1</td>
<td>Contains the Message ID (0000,0110) of the C-MOVE-RQ Message from which this C-STORE sub-operations is being performed.</td>
</tr>
<tr>
<td>Data Set</td>
<td>(no tag)</td>
<td>¾</td>
<td>¾</td>
<td>Application-specific Data Set.</td>
</tr>
</tbody>
</table>

Message Header (Transport Wrapper)

Information Object
General Study Module Attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Type</th>
<th>Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Instance UID</td>
<td>(0020,000D)</td>
<td>1</td>
<td>Unique identifier for the Study.</td>
</tr>
<tr>
<td>Study Date</td>
<td>(0008,0020)</td>
<td>2</td>
<td>Date the Study started.</td>
</tr>
<tr>
<td>Study Time</td>
<td>(0008,0030)</td>
<td>2</td>
<td>Time the Study started.</td>
</tr>
<tr>
<td>Referring Physician’s Name</td>
<td>(0008,0090)</td>
<td>2</td>
<td>Name of the patient's referring physician.</td>
</tr>
<tr>
<td>Referring Physician Identification</td>
<td>(0008,0096)</td>
<td>3</td>
<td>Identification of the patient's referring physician. Only a single item shall be</td>
</tr>
<tr>
<td>Identification Sequence</td>
<td></td>
<td></td>
<td>permitted in this sequence.</td>
</tr>
<tr>
<td>Study ID</td>
<td>(0020,0010)</td>
<td>2</td>
<td>User or equipment generated Study identifier.</td>
</tr>
<tr>
<td>Accession Number</td>
<td>(0008,0050)</td>
<td>2</td>
<td>A RIS generated number that identifies the order for the Study.</td>
</tr>
<tr>
<td>Study Description</td>
<td>(0008,1030)</td>
<td>3</td>
<td>Institution-generated description or classification of the Study (component) performed.</td>
</tr>
<tr>
<td>Physician(s) of Record</td>
<td>(0008,1048)</td>
<td>3</td>
<td>Names of the physician(s) who are responsible for overall patient care at time of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study (see Section C.7.3.1 for Performing Physician)</td>
</tr>
</tbody>
</table>

>Include ‘Person Identification Macro’ Table 10-1
DICOM Example: Study ID Attribute

DICOM Part 6

<table>
<thead>
<tr>
<th>Tag</th>
<th>Name</th>
<th>VR</th>
<th>VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0020,000D)</td>
<td>Study Instance UID</td>
<td>UI</td>
<td>1</td>
</tr>
<tr>
<td>(0020,000E)</td>
<td>Series Instance UID</td>
<td>UI</td>
<td>1</td>
</tr>
<tr>
<td>(0020,0010)</td>
<td>Study ID</td>
<td>SH</td>
<td>1</td>
</tr>
<tr>
<td>(0020,0011)</td>
<td>Series Number</td>
<td>IS</td>
<td>1</td>
</tr>
<tr>
<td>(0020,0012)</td>
<td>Acquisition Number</td>
<td>IS</td>
<td>1</td>
</tr>
<tr>
<td>(0020,0013)</td>
<td>Instance Number</td>
<td>IS</td>
<td>1</td>
</tr>
</tbody>
</table>

DICOM Part 5

<table>
<thead>
<tr>
<th>SH</th>
<th>Description</th>
<th>Default Character Repertoire and/or as defined by (0008,0005).</th>
<th>16 chars maximum (see NOTE in 6.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>Short String</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A character string that may be padded with leading and/or trailing spaces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The character code 05CH (the BACKSLASH "" in ISO-IR 6) shall not be present,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>as it is used as the delimiter between values for multiple data elements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The string shall not have Control Characters except ESC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 chars maximum (see NOTE in 6.2)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Signed Long</td>
<td>not applicable</td>
<td>4 bytes fixed</td>
</tr>
<tr>
<td></td>
<td>Signed binary integer 32 bits long in 2's complement form.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Represents an integer, n, in the range:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-2^{31} <= n <= (2^{31} - 1).]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ</td>
<td>Sequence of Items</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td></td>
<td>Value is a Sequence of zero or more Items, as defined in Section 7.5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>Signed Short</td>
<td>not applicable</td>
<td>2 bytes fixed</td>
</tr>
<tr>
<td></td>
<td>Signed binary integer 16 bits long in 2's complement form.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Represents an integer n in the range:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-2^{15} <= n <= (2^{15} - 1).]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Aspects of DICOM Structured Reports (SR)

- SR documents are encoded using DICOM standard data elements and leverage DICOM network services (storage, query/retrieve).

- SR uses DICOM Patient/Study/Series information model (header), plus hierarchical tree of “Content Items”.

- Extensive mandatory use of coded content
 - Allows use of vocabulary/codes from non-DICOM sources.

- Templates define content constraints for specific types of documents/reports.
DICOM SR Example

DICOM SR Example

DICOM SR Object Classes

- **Basic Text:** narrative text with image references

- **Enhanced and Comprehensive:** text, coded content, numeric measurements, spatial and temporal ROI references

- **CAD:** automated analysis results (mammo, chest, colon)

- **Key Object Selection (KO):** flags one or more images
 - Purpose (for referring physician, for surgery ...) and textual note
 - Used for key image notes and image manifests (in IHE profiles)

- **Procedure Log:** for extended duration procedures (e.g., cath)

- **Radiation Dose Report:** projection X-ray; CT
DICOM Standards Development Process

- Administered by NEMA

- Volunteer working groups meet on varying schedules (one to several times per annum)

- Participants: volunteers from subject matter domain

- Change proposals and new supplements are balloted and / or issued for trial implementation

- Ballot-approved proposals are included in the next annual edition of the standard