Outline

1. Define likelihood
2. Interpretations of likelihoods
3. Likelihood plots
4. Maximum likelihood
5. Likelihood ratio benchmarks
Likelihood

- A common and fruitful approach to statistics is to assume that the data arises from a family of distributions indexed by a parameter that represents a useful summary of the distribution.

- The **likelihood** of a collection of data is the joint density evaluated as a function of the parameters with the data fixed.

- Likelihood analysis of data uses the likelihood to perform inference regarding the unknown parameter.
Likelihood

Given a statistical probability mass function or density, say $f(x, \theta)$, where θ is an unknown parameter, the likelihood is f viewed as a function of θ for a fixed, observed value of x.
Interpretations of likelihoods

The likelihood has the following properties:

1. Ratios of likelihood values measure the relative evidence of one value of the unknown parameter to another.

2. Given a statistical model and observed data, all of the relevant information contained in the data regarding the unknown parameter is contained in the likelihood.

3. If \(\{X_i\} \) are independent events, then their likelihoods multiply. That is, the likelihood of the parameters given all of the \(X_i \) is simply the produce of the individual likelihoods.
Example

- Suppose that we flip a coin with success probability θ.
- Recall that the mass function for x

 \[f(x, \theta) = \theta^x (1 - \theta)^{1-x} \text{ for } \theta \in [0, 1]. \]

 where x is either 0 (Tails) or 1 (Heads).
- Suppose that the result is a head.
- The likelihood is

 \[\mathcal{L}(\theta, 1) = \theta^1 (1 - \theta)^{1-1} = \theta \text{ for } \theta \in [0, 1]. \]

 Therefore, $\mathcal{L}(0.5, 1)/\mathcal{L}(0.25, 1) = 2$,
- There is twice as much evidence supporting the hypothesis that $\theta = 0.5$ to the hypothesis that $\theta = 0.25$.

Example cont’d

- Suppose now that we flip our coin from the previous example 4 times and get the sequence 1, 0, 1, 1
- The likelihood is:
 \[L(\theta, 1, 0, 1, 1) = \theta^1(1 - \theta)^{1-1}\theta^0(1 - \theta)^{1-0}\theta^1(1 - \theta)^{1-1}\theta^1(1 - \theta)^{1-1} \]
 \[= \theta^3(1 - \theta)^1 \]
- This likelihood only depends on the total number of heads and the total number of tails; we might write \(L(\theta, 0, 3) \) for shorthand
- Now consider \(L(.5, 0, 3)/L(.25, 0, 3) = 5.33 \)
- There is over five times as much evidence supporting the hypothesis that \(\theta = .5 \) over that \(\theta = .25 \)
Plotting likelihoods

- Generally, we want to consider all the values of θ between 0 and 1
- A **likelihood plot** displays θ by $\mathcal{L}(\theta, x)$
- Usually, it is divided by its maximum value so that its height is 1
- Because the likelihood measures *relative evidence*, dividing the curve by its maximum value (or any other value for that matter) does not change its interpretation
Maximum likelihood

- The value of θ where the curve reaches its maximum has a special meaning.
- It is the value of θ that is most well supported by the data.
- This point is called the maximum likelihood estimate (or MLE) of θ.

$$MLE = \arg\max_{\theta} \mathcal{L}(\theta, x).$$

- Another interpretation of the MLE is that it is the value of θ that would make the data that we observed most probable.
Maximum likelihood, coin example

- The maximum likelihood estimate for θ is always the proportion of heads.
- Proof: Let x be the number of heads and n be the number of trials.
- Recall

$$L(\theta, x) = \theta^x (1 - \theta)^{n-x}$$

- It’s easier to maximize the log-likelihood

$$l(\theta, x) = x \log(\theta) + (n - x) \log(1 - \theta)$$
Cont’d

- Taking the derivative we get

\[
\frac{d}{d\theta} l(\theta, x) = \frac{x}{\theta} - \frac{n - x}{1 - \theta}
\]

- Setting equal to zero implies

\[
(1 - \frac{x}{n})\theta = (1 - \theta)\frac{x}{n}
\]

- Which is clearly solved at \(\theta = \frac{x}{n} \)

- Notice that the second derivative

\[
\frac{d^2}{d\theta^2} l(\theta, x) = -\frac{x}{\theta^2} - \frac{n - x}{(1 - \theta)^2} < 0
\]

provided that \(x \) is not 0 or \(n \)
What constitutes strong evidence?

- Again imagine an experiment where a person repeatedly flips a coin.
- Consider the possibility that we are entertaining three hypotheses: $H_1 : \theta = 0$, $H_2 : \theta = .5$, and $H_3 : \theta = 1$.
<table>
<thead>
<tr>
<th>Outcome</th>
<th>X</th>
<th>$P(X \mid H_1)$</th>
<th>$P(X \mid H_2)$</th>
<th>$P(X \mid H_3)$</th>
<th>$\mathcal{L}(H_1)/\mathcal{L}(H_2)$</th>
<th>$\mathcal{L}(H_3)/\mathcal{L}(H_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0</td>
<td>.5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>.5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HH</td>
<td>0</td>
<td>.25</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td>0</td>
<td>.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>0</td>
<td>.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>1</td>
<td>.25</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HHH</td>
<td>0</td>
<td>.125</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HHT</td>
<td>0</td>
<td>.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HTH</td>
<td>0</td>
<td>.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>THH</td>
<td>0</td>
<td>.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HTT</td>
<td>0</td>
<td>.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>THT</td>
<td>0</td>
<td>.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TTH</td>
<td>0</td>
<td>.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TTT</td>
<td>1</td>
<td>.125</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Benchmarks

• Using this example as a guide, researchers tend to think of a likelihood ratio
 ➤ of 8 as being moderate evidence
 ➤ of 16 as being moderately strong evidence
 ➤ of 32 as being strong evidence of one hypothesis over another

• Because of this, it is common to draw reference lines at these values on likelihood plots

• Parameter values above the $1/8$ reference line, for example, are such that no other point is more than 8 times better supported given the data