This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Research—Water and Air Quality around CAFOs

Amy R. (Chapin) Sapkota, PhD, MPH
Johns Hopkins University
Background

- Swine CAFOs can pose threats to public health as sources of chemical and biological agents
- Ambient air can be contaminated by the release of odor, gas, and dust plumes
- Surface waters and ground waters can be contaminated by manure wastes
- Respiratory, gastrointestinal, and mental health problems have been documented among workers and neighbors
Swine Odor, Gas, and Dust Plumes

- More than 160 chemical compounds
- Gases: hydrogen sulfide, ammonia, carbon dioxide
- Volatile organic compounds
- Particulate matter (PM10, PM2.5)*
- Bacteria and fungi

*PM10—particulate matter 10 microns and less in size
PM2.5—particulate matter 2.5 microns and less in size
Water Contaminants Associated with Swine Manure

- High levels of nitrates and phosphates
- Heavy metals, including arsenic and copper
- Bacterial and viral pathogens
- Antibiotic residues
- Antibiotic-resistant bacteria?
Transfer of Antibiotic-Resistant Bacteria

Swine CAFO Exposure Assessment Study
Study Objectives

1. To test air samples collected within a swine CAFO for the presence of antibiotic-resistant bacteria

2. To test surface water and ground water samples upstream and downstream of a swine CAFO for the presence of antibiotic-resistant bacteria
Methods: Air Sampling

1. Obtained access to a swine CAFO

2. Developed an air sampling strategy and sampled in 12/03 and 1/04 using an all-glass impinger

3. Isolated bacteria from air samples
 - Standard methods used for the isolation of *Enterococcus* spp. (EPA, 2000)

4. Conducted antimicrobial susceptibility testing using standard methods (NCCLS, 2002)
 - Susceptibility to erythromycin, clindamycin, virginiamycin, tetracycline, and vancomycin was tested

Methods: Water Sampling

1. Developed water sampling strategy and sampled from 9/02 to 1/04
 - Upstream and downstream surface and ground water samples (1L) were collected

2. Isolated bacteria from water samples
 - Standard membrane filtration methods used for the isolation of Enterococcus spp. (EPA, 2000)

3. Conducted antimicrobial susceptibility testing using standard methods (NCCLS, 2002)
 - Susceptibility to erythromycin, clindamycin, virginiamycin, tetracycline and vancomycin was tested

Mean concentration of airborne bacteria was 10^4 colony-forming units (CFUs)/m3.

- 137 presumptive Enterococcus spp.

- Other bacterial species also were identified.
Airborne bacteria isolated from a swine CAFO using methods for the isolation of *Enterococcus* species

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>No. of isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus</td>
<td>47 (34)</td>
</tr>
<tr>
<td>E. avium</td>
<td>5 (4)</td>
</tr>
<tr>
<td>E. dispar</td>
<td>4 (3)</td>
</tr>
<tr>
<td>E. durans</td>
<td>2 (1)</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>6 (4)</td>
</tr>
<tr>
<td>E. faecium</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>E. hirae</td>
<td>14 (10)</td>
</tr>
<tr>
<td>E. mundtii</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>E. pseudoavium</td>
<td>2 (1)</td>
</tr>
<tr>
<td>E. raffinosus</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Other</td>
<td>11 (8)</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>44 (32)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>43 (31)</td>
</tr>
<tr>
<td>Streptococcus</td>
<td></td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td></td>
</tr>
<tr>
<td>Micrococcus luteus</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Total</td>
<td>137 (100)</td>
</tr>
</tbody>
</table>

Adapted by CTLT from: Chapin et al. (2005). *Environmental Health Perspectives*, 113, 2, 137-142.
Results: Air Sampling

- Regardless of bacterial species, 98% of all isolates were multi-drug resistant, expressing high-level resistance to at least two antibiotics.

- *None of the isolates were resistant to vancomycin, an antibiotic that has never been approved for use in the U.S.*
Results: Air Sampling

Phenotypes of antibiotic resistance among airborne bacteria collected from a swine CAFO

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Antibiotic resistance pattern</th>
<th>No. of isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. dispar (n = 4)</td>
<td>Ery, Clin, Tet</td>
<td>4 (100)</td>
</tr>
<tr>
<td>E. durans (n = 2)</td>
<td>Ery, Clin</td>
<td>1 (50)</td>
</tr>
<tr>
<td>E. faecalis (n = 6)</td>
<td>Ery, Clin, Tet, Virg, Tet</td>
<td>1 (17)</td>
</tr>
<tr>
<td>E. faecium (n = 1)</td>
<td>Ery, Clin, Tet, Virg</td>
<td>4 (66)</td>
</tr>
<tr>
<td>E. hirae (n = 14)</td>
<td>Ery, Clin</td>
<td>1 (17)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Ery, Clin, Tet, Virg</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci (n = 42)</td>
<td>Ery, Clin, Tet, Virg, Tet</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Other Enterococcus (n = 11)</td>
<td>Ery, Clin, Tet, Virg</td>
<td>9 (64)</td>
</tr>
<tr>
<td>Viridans group streptococci (n = 43)</td>
<td>Ery, Clin, Tet, Virg</td>
<td>4 (29)</td>
</tr>
</tbody>
</table>

Abbreviations: Clin, clindamycin; Ery, erythromycin; Tet, tetracycline; Virg, virginiamycin.

Chapin et al. (2005). *Environmental Health Perspectives*, 113, 2, 137-142.
Results: Water Sampling

- 200 presumptive *Enterococcus* spp.

- Mean concentrations of drug-resistant *Enterococcus* spp. were
 - 10^2 CFUs/100mL in surface water
 - 10 CFUs/100mL in ground water

- Ground and surface water isolates downstream of the CAFO displayed patterns of antibiotic resistance similar to those observed in the airborne isolates
Preliminary antibiotic resistance results: water sampling

- Antibiotic-resistant non-\emph{E. faecalis Enterococcus} spp. in ground and surface water downstream and upstream of a swine CAFO

Source: Chapin et al.
Conclusions

- High levels of multi-drug-resistant bacteria are present in CAFO air and in surface and ground waters downstream

- CAFO workers and growers are at high risk of exposure to airborne isolates

- Neighbors could be exposed to both airborne and waterborne resistant bacteria through inhalation or ingestion

- Air and water contaminated by swine CAFOs may serve as exposure pathways for the transfer of resistant bacteria from swine to humans
Currently, the issue of antibiotic-resistant bacteria in air or water associated with CAFOs is not on the radar screen of the U.S. government.

- Environmental Protection Agency
 - Gases, particulate matter, volatile organic compounds in air
 - Levels of bacterial indicators and nutrients in water

- Food and Drug Administration
 - Levels of antibiotic-resistant bacteria in food

This research suggests that the issue of resistant bacteria in the environment surrounding CAFOs needs regulatory attention.