Introduction to Industrial Hygiene

Patrick N. Breysse, PhD, CIH
Peter S.J. Lees, PhD, CIH

Johns Hopkins University
Section A

Definition of Industrial Hygiene
What Is Industrial Hygiene?

♦ Definition

– Science and art devoted to the anticipation, recognition, evaluation, and control of those workplace environmental factors which may cause sickness, impaired health and well-being, or significant discomfort and inefficiency among workers or among citizens of the community
What Is an Industrial Hygienist?

- A person who by study, training, and experience can:
 - Anticipate
 - Recognize
 - Evaluate
 - Control

workplace environmental hazards
Some Occupational Hazards

- Chemical agents
 - Gases, vapors and particulate aerosols
- Physical (energy) agents
 - Noise, ionizing / non-ionizing radiation, heat and cold stress
- Biological agents
 - Infectious agents, allergens
- Psychological stressors
- Ergonomic/safety
Industrial Hygiene Concepts

- Anticipation/recognition of potential or actual hazards through knowledge of:
 - Materials
 - Operations
 - Processes
 - Conditions

- Scope of IH activities encompasses the “cradle-to-grave” concept (research through waste disposal)
Industrial Hygiene Concepts

- Evaluation of environmental factors through:
 - Measurement of exposure intensity
 - Determination of exposure frequency, and duration
 - Comparison with regulatory, professional, and internal standards
 - Judgement: weigh all factors
Control of Exposures

- Employ methods to eliminate or reduce exposure resulting in elimination or reduction of the occurrence of occupational disease through:
 - Engineering (including process) interventions
 - Administrative/programmatic measures
 - Personal protective equipment
Opportunities for Control
Section B

Environmental/Occupational Health Paradigm
Environmental/Occupational Health Paradigm

Source → External Exposure → Internal Exposure → Early Biological Effect → Health Effect

Grinding, Chipping, Milling, Sawing, Sweeping, Heating, Welding

Exposure Assessment, Biomarkers, Biomarkers Clinical Manifestation, Disease Death

Health Effect
IH in the Exposure-Response Paradigm

Response (individual or population) vs. Exposure
Exposure Definitions and Concepts

- Contact between outer boundary of the human body (skin, nose, lungs, GI tract) and a pollutant or mixture of pollutants
- Requires the presence of a pollutant and the contact between the person and that medium (vs. potential exposure)
- Quantified by concentration of the contaminant and the time of contact
Exposure Assessment

- **Route of exposure:** Inhalation, ingestion, dermal, injection
- **Magnitude of exposure:** Concentration in media (ppm, mg/m³, f/cm³)
- **Duration of exposure:** Minutes, hours, days, lifetime
- **Frequency of exposure:** Daily, weekly, seasonally
Section C

The Industrial Hygiene Profession
Education of an Industrial Hygienist

- Usually requires advanced education in engineering and the biological sciences
- A combination of education and experience is necessary in order to take the American Board of Industrial Hygiene (ABIH) exam for certification in industrial hygiene (CIH)
Who Is an Industrial Hygienist?

- Education
 - Undergraduate degree in sciences or engineering (28%)
 - Graduate level (68%)

Source: Taken from AIHA membership survey, 2000
Who Is an Industrial Hygienist?

- Employed by
 - Industry (47%)
 - Consulting (23%)
 - Government (14%)
 - Academia (5%)
 - Insurance (3%)
 - Labor (1%)

Source: Taken from AIHA membership survey, 2000
American Board of Industrial Hygiene

- Established to improve the practice and educational standards of the profession
- Primary influence through certification
 - CIH by written exam and five years practice
 - Not required for practice (no licensing)
 - Five-year recertification cycle
 - Approximately 9,000 in United States
Professional Organizations

- American Industrial Hygiene Association (AIHA)
 - Founded 1939
 - Nonprofit professional society for IH professionals
 - Exists to promote the field
 - 12,500 members in 2000

Continued
Professional Organizations

- American Conference of Governmental Industrial Hygienists (ACGIH)
 - Founded 1938
 - Free exchange of ideas and promotion of standards and techniques in industrial health
Professional Organizations

- **ACGIH**
 - Approximately 5,000 members
 - Full members government and academic IHs only
 - Increased role for associate members
 - Publish threshold limit values (TLVs) and Biological Exposure Indices (BEIs)
Section D

Risk Assessment and Industrial Hygiene
Risk Assessment

- *Risk assessment* is usually considered to be an environmental term, but it is an essential part of the industrial hygiene profession.
- Broadly defined as the methodology that predicts the likelihood of unwanted events (explosions, injuries, natural catastrophes, diseases, death).
Risk Assessment

Comparison of Terminology

<table>
<thead>
<tr>
<th>Industrial Hygiene</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipation and Recognition</td>
<td>Hazard identification</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Exposure and toxicity assessment and Risk characterization</td>
</tr>
<tr>
<td>Control</td>
<td>Risk management</td>
</tr>
<tr>
<td>Hazard communication</td>
<td>Risk communication</td>
</tr>
</tbody>
</table>
Risk Assessment

- The act of comparing exposure measurements with exposure limits (TLVs, PELs, etc.) is a fundamental aspect of risk characterization which is the final step in the risk assessment process.
Risk Assessment

- Risk assessment Equation 1:

\[
\text{Risk} = \left(\frac{\text{Prob. of Health Effect}}{\text{Unit of Exposure}} \right) \times (\text{Level of Exposure})
\]
Risk Assessment

- Another form of Equation 1:

\[
\text{Risk} = \left(\frac{\text{Prob. of Health Effect}}{\text{Absorbed Dose}} \right) \times (\text{Absorbed Dose})
\]
Risk Assessment

- Equation 1: Determining the probability of a negative health effect by combining the dose-response and exposure assessment over some relevant period of time
- Exposure is an approximation for dose
- Absorbed dose is the relative or specific amount of material that gets into the body and therefore can do harm
Estimated Asbestos Related Cancer Mortality per 100,000 by Number of Years Exposed and Exposure Level

<table>
<thead>
<tr>
<th>Asbestos fiber concentration (f/ml)</th>
<th>Cancer mortality /100,000 exposed</th>
<th>45 years exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lung</td>
<td>Mesothe-lioma</td>
</tr>
<tr>
<td>0.1</td>
<td>231</td>
<td>82</td>
</tr>
<tr>
<td>0.2</td>
<td>460</td>
<td>164</td>
</tr>
<tr>
<td>0.5</td>
<td>1143</td>
<td>407</td>
</tr>
<tr>
<td>2.0</td>
<td>4416</td>
<td>1554</td>
</tr>
<tr>
<td>4.0</td>
<td>8441</td>
<td>2924</td>
</tr>
<tr>
<td>5.0</td>
<td>10318</td>
<td>3547</td>
</tr>
<tr>
<td>10.0</td>
<td>18515</td>
<td>6141</td>
</tr>
</tbody>
</table>

² Estimated as 10% of lung cancer risk rather than calculated using dose-response information.

Source: The Federal Register, 2 August 1986