Air Sampling for Gases and Vapors

Patrick N. Breysse, PhD, CIH
Peter S.J. Lees, PhD, CIH
Johns Hopkins University
Section A

Introduction
Exposure Assessment Methods

- General air-sampling methodology
Concentration

\[
\text{Concentration} = \frac{\text{Mass}_{\text{contaminant}}}{\text{Volume}_{\text{air}}}
\]

- Contaminant mass from laboratory analysis
- Air volume from product of calibrated air flow rate and sampling time
Charcoal Tube Calibration

Calibrator

Tubing

Charcoal tube Holder

Sampling Pump

Source: Patrick Breysse
Personal Sampling Pumps
Section B

Sample Collection Methods
Sampling for Gases and Vapors

- Absorptive methods
 - *Absorption* is a molecular process by which molecules are homogeneously dispersed in another substance
 - Forming a solution (i.e., requires a liquid sampling medium)
- Methods now mostly obsolete
Sampling for Gases and Vapors

- **Adsorptive methods**
 - *Adsorption* is a molecular process by which molecules are reversibly bound to a surface
 - Bound by intermolecular or van der Waals forces
 - Uses solids as sampling medium
- Most current gas and vapor methods are adsorptive
Absorptive Methods: Impingers

- Contaminant bubbled through absorbent solution
- Solution changes according to analyte
- Analyzed by wet chemical methods
- Messy and unstable; not suited to personal sampling
- Used for gases (NO₂)
Impingers

Source: U. S. Government
Adsorptive Methods

- Gas and vapor molecules “stick” to solid surface
- Highly efficient reversible process
- Contaminant stable for transport
- Many different adsorbents available
- Can be affected by high humidity
- Subject to overload
Adsorptive Methods

Some common adsorbent media

- Activated charcoal: Polar solvents (many hydrocarbons)
- Silica gel: Non-polar solvents (alcohols and aldehydes)
- Treated diatomaceous earth
- Gas chromatographic supports
Adsorbent Tubes

Source: Patrick Breysse
Adsorptive Methods: Charcoal

- Sampling
 - 20–200 ml/min drawn through tube
- Analysis
 - Analyte(s) desorbed (CS2, or thermally)
 - Typically analyzed using gas chromatography
Adsorptive Methods: Charcoal

- Overload
 - >25% on “B” section indicates breakthrough (loss)
 - Discard sample or report as underestimate
Section C

Passive Sampling Methods
Passive (Diffusive) Sampling

- Passive sampling relies on the natural diffusive energy of molecules to move them to sampling media.
- Contaminant flux (mass/sampler area/unit time) is governed by Fick’s Law.
- Effective flow rates generally 5–30 ml/min.
- A variety of designs.
Example: Passive Sampler

Source: Peter Lees
Section D

Sample Analysis
Gas and Vapor Analysis

- Numerous methods
 - Spectrophotometric
 - Chromatographic
 - Gas chromatography (GC)
 - High-performance liquid chromatography (HPLC)
 - GC-Mass spectrometry (GC-MS)
 - Wet chemical
Analytical Laboratory

- Choose analytical laboratory before sampling
- Choose standard method
- Know limits of detection
 - Calculate minimum sample volume to be minimally detectable
 - Evaluate breakthrough potential
- Know interferences
Quality Control

- **Blanks**
 - At least 10% of samples should be blanks
- **Spiked samples**
 - Whenever possible, submit a “known” or spiked sample
Quality Control

- Split samples
 - If possible, submit split samples to either the same laboratory or two different laboratories
Section E

Direct-Reading Instruments
Direct-Reading Instruments

- “Real time” measurement of contaminant
- Information saved to data logger
- Subsequent data analysis (mean, min., max., etc.)
- Principle of operation varies
 - Infrared absorption
 - Ultraviolet absorption
 - Electro-chemical method
Direct-Reading Instruments

- Numerous designs and manufacturers
- Possible uses
 - Walk-through survey (preliminary hypothesis testing)
 - Leak detection
 - Over-exposure alarm
 - Personal monitoring
 - Emergency response
Direct-Reading Instruments

- Limitations
 - Specific versus non-specific response
 - Must know principal of operation
 - Must know positive and negative interference
 - Must be calibrated often
 - Subject to damage