Exposure Assessment Concepts

Patrick N. Breysse, PhD, CIH
Peter S.J. Lees, PhD, CIH

Johns Hopkins University
Section A

Introduction
Origin of Hygiene

- Hygeia was the Greek goddess of health
- Rene Dubos wrote: “For the worshippers of Hygeia, health is … a positive attribute to which men are entitled if they govern their lives wisely”
- Prevention is key
Exposure—Definition

- Contact between the outer boundary of the human body (skin, nose, lungs, GI tract) and a contaminant
- Requires the simultaneous presence of a contaminant and the contact between the person and that medium
- Quantified by concentration of contaminant and time and frequency of contact
Route of Exposure

- Inhalation
- Ingestion
- Dermal
- Direct injection
- Inhalation is most common in workplace—but not in general environment
- Moving towards concept of total exposure
Exposure Assessment

- Magnitude
 - Concentration in media (ppm, f/cc)
- Duration
 - Minutes, hours, days, working life, lifetime
- Frequency
 - Daily, weekly, seasonally
Types of Air Sampling: Time

- **FULL PERIOD SINGLE SAMPLE**
- **FULL PERIOD CONSECUTIVE SAMPLES**
- **PARTIAL PERIOD CONSECUTIVE SAMPLES**
- **(RANDOM) GRAB SAMPLES**

Source: U.S. Government
Section B

Exposure Assessment
Exposure Assessment

1. Assessment of hazard
 – Identification of potential hazards
 – Qualitative assessment of exposure
 – Exposure potential, magnitude, toxicity, etc.
 – Exposure modeling

2. Identification of concerns (hypothesis)
Exposure Assessment

3. Quantification of exposure
4. Determine acceptability
 – Comparison with measure of safe or acceptable
 – Professional judgment and other factors
5. Decision on appropriate action
6. Periodically re-evaluate
1. Assessment of Hazard

- Process description with emphasis on:
 - Raw materials
 - Contaminant chemicals
 - Intermediates
 - By-products
 - Decomposition products
 - Additives

Continued
1. Assessment of Hazard

- Sources of chemical use information
 - Material Safety Data Sheets (MSDS)
 - Inventories
 - Purchasing records
 - Standard operation procedures (SOPs)
 - Inspections of workplace
 - Interviews with workers

Continued
1. Assessment of Hazard

- Methods of chemical use
 - Focus on opportunities for contaminant release to the workplace environment
 - Physical-chemical factors governing release
 - Physical-chemical factors influencing magnitude

Source: U.S. Government
1. Assessment of Hazard

- Methods of chemical use
 - Focus on opportunities for exposure
 - Routes of exposure
 - Influence of work practices

Source: U.S. Government
1. Assessment of Hazard

- Preliminary inspection and observations
 - Worker and management interviews
 - Evaluate work practices
 - Note personal protective equipment
 - Note ventilation/other controls
1. Assessment of Hazard

- Additional preliminary observations
 - Housekeeping
 - Maintenance
 - Emergency procedures
 - Perceptions/experience
1. Assessment of Hazard

- Review of documents
 - Internal reports and records
 - Industry reports
 - Government reports and publications
 - Texts, other publications

- Note: This can be time-consuming
1. Assessment of Hazard

- Review of documents
 - Previous inspections
 - Medical complaints
 - OSHA 200 log

- Note: This can be time-consuming
1. Assessment of Hazard

- **Exposure modeling**
 - Use a mathematical construct to quantitatively estimate exposures
 - Models will typically include
 - Source term
 - Transport in time and space
 - Receptor factors (time activity information)
2. Identification of Concerns

- Given limited resources, focus on limited number of possible exposures
- Develop exposure assessment goals
 - Can be hypotheses about exposures to be tested by quantitative assessment
- Create a written exposure assessment program
3. Quantitative Assessment

- To confirm or refute exposure hypotheses and to serve as a basis for decision making
- Quantitative assessment of exposure via air sampling (i.e., measurement of air concentrations of a contaminant) is a tool for estimating risk or hazard
- Used in conjunction with observations, calculations, discussions, medical data, etc.
3. Quantitative Assessment

- Ideally would like to know or estimate
 - Exposure magnitude or intensity
 - Exposure duration
 - Exposure frequency
 - Numbers exposed
 - Population characteristics

- Statistical description
 - Make inferences in absence of data
Exposure Profile

Time weighted average (TWA)

Peak
Sources of Variability

- Methodological variability
 - Random error from sampling and analysis process
 - ± 5–30 percent

- Environmental variability
 - Non-random error from:
 - Manufacturing process
 - Environment

\{ \text{Spatial/temporal} \}
Sources of Variability

- Environmental variability
 - Inter- and intra-person
 - ± order(s) of magnitude
4. Determine Acceptability

- Role of air sampling
 - Used as a tool for estimating risk or hazard
 - Other observations, calculations, discussions with workers, medical data, etc.
- Comparison with measure of safe or acceptable
- Professional judgment and other factors
Introduction to TLV Book

- The values listed in this book are:
 - Guidelines to assist in the control of workplace hazards
 - Not fine lines between safe and dangerous
- TLVs should be used by trained IHs
- Need to refer to individual documentation
5. Decision on Appropriate Action

- Prioritize
- Develop workplace control plan
 - Short term
 - PPE
 - Administrative
 - Work practices
 - Long term
 - Engineering controls
6. Periodically Re-Evaluate

- Whenever significant process or workforce change occurs
- Develop schedule for routine periodic re-evaluation
 - Basic workplace characterization
 - Exposure assessment program
 - Workplace control plan
Record Keeping

- Set up occupational exposures database
 - Can be complicated
 - Keep indefinitely
- Hazard communication
- Workplace control changes
Section C

Standard Methods
Use of Standard Methods

- Developed by NIOSH, OSHA, EPA, and others
- Standardize sampling and analytical procedures
- Limits of detection known
- Sampling and analytical error determined
<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>METHOD #</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMULA</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>Chemical Abstracts Service #</td>
<td>RTECS #</td>
</tr>
</tbody>
</table>

Method numbers are the same as those in the 3rd edition. Evaluation (Full, Partial, Unrated, N/A) is assigned as described in Method Classification of these "blue pages." Issue date reflects current version (e.g., August 15, 1994) and previous 3rd edition versions, if any.

OSHA: These exposure limit values are those in effect at the time of printing of the method.

NIOSH: Boiling/melting points, equilibrium vapor pressure, and density help determine the sample aerosol/vapor composition.

ACGIH: Synonyms ("yellow pages" in this Manual).

SYNONYMS: Common synonyms for the substance. These are all listed alphabetically in the Index of Names and Synonyms ("yellow pages" in this Manual).

PROPERTIES:

SAMPLES: Brief description of sampling EQUIPMENT.

FLOW RATE: Acceptable sampling range, L/min.

VOL-MIN: Minimum sample volume (L) corresponds to Limit of Quantitation (LOQ) at OSHA PEL.

MAX: Maximum sample volume (L) to avoid analyte breakthrough or overloading.

BLANKS: Each set should have at least 2 field blanks, up to 10% of samples, plus 6 or more media blanks in the case of coated sorbents, impinger solutions, or other special samplers.

ACCUACY

Data are for experiments in which known atmospheres of the substance were generated and analyzed according to the method. Target accuracy is less than 25% difference from actual concentration over the range of the method.

TECHNIQUE: The measurement technique used.

ANALYTE: The chemical species actually measured.

CALIBRATION: Summary of type of standards used.

RANGE: Range of calibration standards to be used from LOQ to upper limit of measurement. Note: More concentrated samples may be diluted in most cases to fall within this calibration range.

ESTIMATED LOD: Limit of detection (background + 3).

PRECISION (%) Experimental precision of spiked samplers.

APPLICABILITY: The conditions under which the method is useful, including the working range in mg/m³ (from the LOQ to the maximum sampler loading) for a stated air volume are given here.

INTERFERENCES: Compounds or conditions which are known to interfere in either sampling or measurement are listed.

OTHER METHODS: Methods from the 2nd edition ("P&CAM" and "S" methods) and current methods which are related to this one, as well as similar OSHA and literature methods are keyed to REFERENCES.

Source: U.S. Government
NIOSH Methods

<table>
<thead>
<tr>
<th>Method #</th>
<th>Substances</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001-0799</td>
<td>General air samples</td>
</tr>
<tr>
<td>0800-0999</td>
<td>Bioaerosols</td>
</tr>
<tr>
<td>1000-1999</td>
<td>Organic vapors on charcoal</td>
</tr>
<tr>
<td>2000-3499</td>
<td>Organic vapors on other solid sorbents</td>
</tr>
<tr>
<td>3500-3999</td>
<td>Organic vapors on other samplers (e.g., liquids, direct-reading)</td>
</tr>
<tr>
<td>4000-4999</td>
<td>Organic vapors on diffusive samplers</td>
</tr>
<tr>
<td>5000-5999</td>
<td>Organic aerosols</td>
</tr>
<tr>
<td>6000-6999</td>
<td>Inorganic gases</td>
</tr>
<tr>
<td>7000-7999</td>
<td>Inorganic aerosols</td>
</tr>
<tr>
<td>8000-8999</td>
<td>Biological samples</td>
</tr>
</tbody>
</table>

Source: U.S. Government