Methods in Survey Sampling
Biostat 140.640

Stratified Sampling

Saifuddin Ahmed, PhD
Dept. of Biostatistics
Stratified Sampling

In stratified sampling the population is partitioned into groups, called strata, and sampling is performed separately within each stratum.
When?

• Population groups may have different values for the responses of interest.

• If we want to improve our estimation for each group separately.

• To ensure adequate sample size for each group.
In stratified sampling designs:

- stratum variables are mutually exclusive (non-overlapping), e.g., urban/rural areas, economic categories, geographic regions, race, sex, etc.

- the population (elements) should be homogenous within-stratum, and

- the population (elements) should be heterogenous between the strata.
Advantages

• Provides opportunity to study the stratum variations - estimation could be made for each stratum
• Disproportionate sample may be selected from each stratum
• The precision likely to increase as variance may be smaller than SRS with same sample size
• Field works can be organized using the strata (e.g., by geographical areas or regions)
• Reduce survey costs.
The principal objective of stratification is to reduce sampling errors.
Disadvantages

• Sampling frame is needed for each stratum
• Analysis method is complex
 – Correct variance estimation
• Data analysis should take sampling “weight” into account for disproportionate sampling of strata
• Sample size estimation is difficult in practice
When sample is selected by SRS technique independently within each stratum, the design is called *stratified random sampling*.
Theory of Stratified Sampling

With systematic sampling, the target population is partitioned into $H > 1$ non-overlapping subpopulations of strata.

If the population size consists of N discrete elements, then under stratified sampling,

$$N = N_1 + N_2 + N_3 + \ldots + N_H$$

That is,

$$N = \sum_{h=1}^{H} N_h$$
Estimation of Total
for a random variable y

Let $y_{hi} = \text{value of } i_{th} \text{ unit in stratum } h$

Then, population total for stratum h is:

$$t_h = \sum_{i=1}^{N_h} y_{hi}$$

And, population total is:

$$t = \sum_{h=1}^{H} t_h$$

That is, $t = t_1 + t_2 + t_3 + \ldots + t_H$

(compare to: $N = N_1 + N_2 + N_3 + \ldots + N_H$)
Strata totals are additive
But, not the strata means
Population mean for strata h is:

\[
\bar{y}_h = \frac{t_h}{N_h}
\]

However,

\[
\bar{y} \neq \bar{y}_1 + \bar{y}_2 + \ldots + \bar{y}_H
\]

Because,

\[
\bar{y} = \frac{t}{N} = \frac{t_1 + t_2 + \ldots + t_H}{N_1 + N_2 + \ldots + N_H} \neq \frac{t_1}{N_1} + \frac{t_2}{N_2} + \ldots + \frac{t_H}{N_H}
\]

Strata means are not additive
However, we can formulate an additive relationship, by “weight” factors:

\[\bar{y} = W_1 \bar{y}_1 + W_2 \bar{y}_2 + \ldots + W_H \bar{y}_H \]

Where,

\[W_h = \frac{N_h}{N} \]

Note that,

\[\sum_{h=1}^{H} W_h = 1 \]
Proof:

\[\bar{y} = W_1 \bar{y}_1 + W_2 \bar{y}_2 + \ldots + W_H \bar{y}_H \]

\[= \frac{N_1}{N} \bar{y}_1 + \frac{N_2}{N} \bar{y}_2 + \ldots + \frac{N_H}{N} \bar{y}_H \]

\[= \frac{N_1}{N} \bar{y}_1 + \frac{N_2}{N} \bar{y}_2 + \ldots + \frac{N_H}{N} \bar{y}_H \]

\[= \frac{t_1}{N} + \frac{t_2}{N} + \ldots + \frac{t_H}{N} \]

\[= \frac{t}{N} \]
An example

Two areas: \(N_A = 10,000 \) and \(N_B = 20,000 \);
So, \(N = 30,000 \)

Mean \(A \) = \((5,000/10,000)\) = 0.5
Mean \(B \) = \((5,000/20,000)\) = 0.25

Overall mean = \((5,000+5,000)/(10,000+20,000)\) = 0.33333

Then, \(W_A = (10,000/30,000) = 1/3 \) and \(W_B = (20,000/30,000) = 2/3 \)

In STATA calculator: \(Y = (W_A * Y_A + W_B * Y_B) \)

di “overall mean” = \((1/3)*0.5+(2/3)*0.25\)

. “overall mean” = 0.33333333
Variance Estimation of Stratified Sampling

1. An unbiased estimator of the population mean, \(\mu \) of a variable \(Y \) is the stratified estimator of \(\mu \):

\[
\bar{Y}_{str} = W_1 \bar{Y}_1 + W_2 \bar{Y}_2 + \ldots + W_H \bar{Y}_H
\]

Where,

\[
W_h = \frac{N_h}{N}
\]

Its variance is:

\[
Var(\bar{Y}_{str}) = Var(W_1 \bar{Y}_1) + Var(W_2 \bar{Y}_2) + \ldots + Var(W_H \bar{Y}_H)
\]

\[
= W_1^2 Var(\bar{Y}_1) + W_2^2 Var(\bar{Y}_2) + \ldots + W_H^2 Var(\bar{Y}_H)
\]

\[
= \sum_{h=1}^{H} W_h^2 Var(\bar{Y}_h)
\]

\[
= \sum_{h=1}^{H} W_h^2 \frac{\sigma_h^2}{n_h} , \text{ under SRSWR}
\]

\[
= \sum_{h=1}^{H} W_h^2 \frac{\sigma_h^2}{n_h} \frac{N_h - n_h}{N_h - 1} , \text{ under SRSWOR}
\]
An unbiased estimator of the proportion, P, of population elements from stratified sampling is:

$$ P_{str} = W_1 P_1 + W_2 P_2 + \ldots + W_H P_H $$

$$ = \sum_{h=1}^{H} W_h P_h $$

$$ \text{Var}(P_{str}) = \sum_{h=1}^{H} W_h^2 \frac{P_h (1 - P_h)}{n_h}, \text{ under SRSWR} $$

$$ = \sum_{h=1}^{H} W_h^2 \frac{P_h (1 - P_h)}{n_h} \frac{N_h - n_h}{N_h - 1}, \text{ under SRSWOR} $$
An unbiased estimator of the total, \(\hat{t} \), of population elements from stratified sampling is:

\[
Var(\hat{t}_{str.}) = \sum_{h=1}^{H} Var(\hat{t}_h)
\]

\[
= \sum_{h=1}^{H} Var(N_h \bar{y}_h)
\]

\[
= \sum_{h=1}^{H} N_h^2 \frac{s_h^2}{n_h}, \text{ under SRSWR}
\]

\[
= \sum_{h=1}^{H} N_h^2 \frac{s_h^2}{n_h} \frac{N_h - n_h}{N_h}, \text{ under SRSWOR}
\]
Another method of estimating \(\text{var}(y_{\text{mean}}) \):

\[
\text{Var}(\bar{y}_{str}) = \text{Var} \left(\frac{\hat{t}_{str}}{N} \right) = \frac{1}{N^2} \sum_{h=1}^{H} \text{Var}(\hat{t}_h) = \sum_{h=1}^{H} \frac{N_h^2}{N^2} \frac{s_h^2}{n_h} \frac{N_h - n_h}{N_h}, \text{ under SRSWOR}
\]

\[
= \sum_{h=1}^{H} \left(\frac{N_h}{N} \right)^2 \frac{s_h^2}{n_h} \frac{N_h - n_h}{N_h} = \sum_{h=1}^{H} W^2 \frac{s_h^2}{n_h} \frac{N_h - n_h}{N_h}
\]
Variance estimated under stratified sampling is always lower than the variance estimated under SRS.

This is best illustrated by considering that,

\[
\text{variance (total)} = \text{variance (within)} + \text{variance (between)}
\]

In case of stratified sampling, variance (between) = 0, i.e., all variance is due to variability within the strata.

And, because variance (between) < variance (total), stratified sampling variance is lower than that of SRS.
An example
4 groups (strata)

```
.ta group

<table>
<thead>
<tr>
<th>group</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>25.00</td>
<td>50.00</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>25.00</td>
<td>75.00</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>25.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
```
An example

bysort group: sum x

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>250</td>
<td>48.93032</td>
<td>28.93071</td>
<td>.0354402</td>
<td>99.5811</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>250</td>
<td>94.12133</td>
<td>59.57098</td>
<td>1.846363</td>
<td>199.6159</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>250</td>
<td>150.7658</td>
<td>85.04665</td>
<td>.1417242</td>
<td>299.6221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>250</td>
<td>192.7725</td>
<td>118.5134</td>
<td>3.255986</td>
<td>398.5283</td>
</tr>
</tbody>
</table>
Under SRS:

. *stddev of x: sqrt{variance(x)}

. sum x

Variable | Obs Mean Std. Dev. Min Max
---------+---
 x | 1000 121.6475 96.89047 .0354402 398.5283

. *stderr of x: sqrt{variance(x)/n}

. ci x

Variable | Obs Mean Std. Err. [95% Conf. Interval]
---------+---
 x | 1000 121.6475 3.063946 115.635 127.66
Under **Stratified Sampling**:

. *stderr of x under STRATIFIED SAMPLING
. Svymean x, str(group)

Survey mean estimation
pweight: <none> Number of obs = 1000
Strata: group Number of strata = 4
PSU: <observations> Number of PSUs = 1000
Population size = 1000

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
<th>Deff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>121.6475</td>
<td>2.532984</td>
<td>116.6769</td>
<td>126.6181</td>
</tr>
</tbody>
</table>
Why the variance/StdErr estimated under stratified sampling is lower than SRS?

loneway x group

One-way Analysis of Variance for x:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between group</td>
<td>2988029.6</td>
<td>3</td>
<td>996009.86</td>
<td>155.24</td>
<td>0.0000</td>
</tr>
<tr>
<td>Within group</td>
<td>6390344.9</td>
<td>996</td>
<td>6416.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9378374.5</td>
<td>999</td>
<td>9387.7623</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why the variance/StdErr estimated under stratified sampling is lower than SRS?

loneway x group

One-way Analysis of Variance for x:

Number of obs = 1000
R-squared = 0.3186

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between group</td>
<td>2988029.6</td>
<td>3</td>
<td>996009.86</td>
<td>155.24</td>
<td>0.0000</td>
</tr>
<tr>
<td>Within group</td>
<td>6390344.9</td>
<td>996</td>
<td>6416.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9378374.5</td>
<td>999</td>
<td>9387.7623</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* {var(between)+var(within)/n-1}/n
. disp ((2988029.57+6390344.95)/999)/1000
 9.3877623

. stderr estimation
. disp sqrt(9.3877623)
 3.0639455

Variance under SRS

Standard error under SRS
stderr estimation under STRATIFIED SAMPLING

One-way Analysis of Variance for x:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between group</td>
<td>2988029.6</td>
<td>3</td>
<td>996009.86</td>
<td>155.24</td>
<td>0.0000</td>
</tr>
<tr>
<td>Within group</td>
<td>6390344.9</td>
<td>996</td>
<td>6416.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9378374.5</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of obs = 1000
R-squared = 0.3186

SE under stratified design:

\[\text{SE} = \sqrt{\frac{6416.009898}{1000}} \]

2.5329842
Under Stratified Sampling

<table>
<thead>
<tr>
<th>Mean</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
<th>Deff</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>121.6475</td>
<td>2.532984</td>
<td>116.6769</td>
<td>126.6181</td>
</tr>
</tbody>
</table>

Under SRS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1000</td>
<td>121.6475</td>
<td>3.063946</td>
<td>115.635</td>
</tr>
</tbody>
</table>

Design effect:

\[
\text{Deff} = \frac{\text{variance under stratified sampling}}{\text{variance under SRS}}
\]

\[
= \frac{2.5329842^2}{3.0639455^2} = .68344393
\]
In stratified sampling it is assumed that “between variance” = 0. Total variance under stratified sampling equals to “within variance” only.

Hence, variance from stratified sampling is always lower than under SRS.
Two Basic Rules of Stratified Sampling

• A minimum of two-elements must be chosen from each stratum so that sampling errors can be estimated for all strata independently.

• The population (elements) should be *homogenous* within stratum, and the population (elements) should be *heterogenous* between the strata.
First Rule: Minimum 2 elements in each stratum

- In Stata, the svy commands will not work if less than 2 elements are available in any strata.
- This is often a problem for sub-group analyses. A solution is to combine adjacent strata (you must have information about strata labels).
Second rule: population (elements) should be *homogenous* within stratum

- Suggests that “the gains in variance precision is greatest when the strata are maximally *heterogenous* *between*, but *homogenous* *within*.

\[
\text{variance(total)} = \text{variance(within)} + \text{variance(between)}
\]

\[\text{fixed}\]
$$\text{variance(total)} = \text{variance(within)} + \text{variance (between)}$$

- When the elements are homogenous (quite similar), there is less variance [\text{variance(within) is smaller}]
- Because \text{variance(between strata)}=0 in stratified sampling design, smaller the \text{variance(within)}, smaller the \text{total(variance)}.

\[
\begin{align*}
\text{variance(total)} &= \text{variance(within)} + 0 \\
\end{align*}
\]

So, the objective is to increase \text{variance(between)} and decrease \text{variance(within)}.
Sample Size Estimation for Stratified Sampling Design

- Sample size estimation for stratified sampling is difficult in practice, not for the complexity of sample size formula.

- Sample size estimation depends on variance estimation. Consider the variance of a mean for a variable y:

$$V\text{ar} \left(\bar{y}_{str} \right) = \text{Var} \left(\frac{i_{str}}{N} \right)$$

$$= \frac{1}{N^2} \sum_{h=1}^{H} \text{Var} \left(\frac{i_h}{n_h} \right)$$

$$= \sum_{h=1}^{H} \left(\frac{N_h}{N} \right)^2 \frac{s_h^2}{n_h} \frac{N_h - n_h}{N_h}, \text{ under SRSWOR}$$

$$= \sum_{h=1}^{H} \left(\frac{N_h}{N} \right)^2 s_h^2 \frac{N_h - n_h}{n_h}$$

$$= \sum_{h=1}^{H} W^2 \frac{s_h^2}{n_h} \frac{N_h - n_h}{N_h}$$

Under SRS[WR]
Problem

- The variance estimation, even under “with replacement,” needs information on additional three factors: \(N, N_h, s^2_h \).

- It is very difficult or impossible to get information on \(s^2_h \) from each stratum.

\[
\text{Var}(\bar{y}_{str}) = \text{Var}\left(\frac{\hat{t}_{str}}{N} \right)
\]

\[
= \frac{1}{N^2} \sum_{h=1}^{N} \text{Var}(\hat{t}_h)
\]

\[
= \sum_{h=1}^{H} \left(\frac{N_h}{N} \right)^2 \left(-\frac{s_h^2}{n_h} \frac{N_h - n_h}{N_h} \right), \text{ under SRSWOR}
\]

\[
= \sum_{h=1}^{H} \left(\frac{N_h}{N} \right)^2 \left(s_h^2 \frac{N_h - n_h}{n_h} \right)
\]

\[
= \sum_{h=1}^{H} W^2 \left(\frac{s_h^2}{n_h} \frac{N_h - n_h}{N_h} \right)
\]
Sample Size Estimation for Stratified Sampling Design

- For those want to try!

\[
n = \frac{\sum_{h=1}^{H} \frac{N_h S_h^2}{n_h / n}}{N^2 \left(\frac{d^2}{Z^2 \alpha/2} \right) + \sum_{h=1}^{H} N_h S_h^2}
\]

- Substitute \(p_h(1-p_h) \) for binary outcomes (proportions).

- In practice, stratified sampling SS estimation is done under SRS assumption (more conservative) or preferably multi-stage sampling design method is used, and not done as a single stage sampling strategy.
Allocation of Stratified Sampling

The major task of stratified sampling design is the appropriate allocation of samples to different strata.

Types of allocation methods:

- Equal allocation
- Proportional to stratum size
- Allocation based on variance differences among the strata
- Cost based sample allocation
Equal Allocation

• Divide the number of sample units n equally among the K strata.

• Formula: $n_h = n/K$

• Example: $n = 100$; 4 strata; sample $n_h=100/4 = 25$ in each stratum.

• May not be equal in each stratum. (what if you have 3 strata?)

• Need “weighted analysis” (disproportionate selection)
Proportional allocation

• Make the proportion of each stratum sampled identical to the proportion of the population.

• Formula: Let the sample fraction \(f = n/N \).

So, \(n_h = fN_h = n(N_h/N) = nW_h \),

Where \(W_h = N_h/N \) is the stratum weight.

• Note, \(f \) is constant across strata, but \(W_h \) varies among strata.

• Self-weighted (equal proportion from each stratum)
Proportional allocation

Example:

• $N = 1000$
• $n = 100$
• $f = n/N = 100/100 = 0.1$
• $N_1 = 700 \quad n_1 = fN_1 = 0.1 \times 700 = 70$
• $N_2 = 300 \quad n_2 = fN_2 = 0.1 \times 300 = 30$
Disadvantages

• A major disadvantage of proportional allocation:
 – Sample size in a stratum may be low – provide unreliable stratum-specific results.

• A major disadvantages of equal allocation:
 – May need to use weighting to have unbiased estimates.
Optimal allocation (Neyman Allocation)

Based on the variability of sampling: more variable strata should be sampled more intensely.

Formula:

\[n_h = n \frac{\sum_{h=1}^{H} N_h S_h}{\sum_{k=1}^{H} N_k S_k} \]

- Need “weighted analysis” (disproportionate selection)
Drawing stratified random samples

Stata implementation (from a list):

```
.ta area
         type of |     Freq.    Percent     Cum.  
            area |           |           |       
-----------------+-----------------+----------+---------+---------
        major urban |       343     7.11      7.11  
        other urban |      1,024    21.23     28.34  
            rural |      3,457    71.66    100.00  
-----------------+-----------------+----------+---------+---------
          Total |      4,824     100.00  
```

Equal allocation

. sample 200, count by(area)
(4224 observations deleted)
. ta area

<table>
<thead>
<tr>
<th>type of area</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>major urban</td>
<td>200</td>
<td>33.33</td>
<td>33.33</td>
</tr>
<tr>
<td>other urban</td>
<td>200</td>
<td>33.33</td>
<td>66.67</td>
</tr>
<tr>
<td>rural</td>
<td>200</td>
<td>33.33</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>600</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
Proportional allocation

. sample 20, by(area)
(3859 observations deleted)
. ta area

<table>
<thead>
<tr>
<th>type of area</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>major urban</td>
<td>69</td>
<td>7.15</td>
<td>7.15</td>
</tr>
<tr>
<td>other urban</td>
<td>205</td>
<td>21.24</td>
<td>28.39</td>
</tr>
<tr>
<td>rural</td>
<td>691</td>
<td>71.61</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>965</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
Proportional allocation

```
. sample 20, by(area)
(3859 observations deleted)
. ta area

<table>
<thead>
<tr>
<th>type of area</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>major urban</td>
<td>69</td>
<td>7.15</td>
<td>7.15</td>
</tr>
<tr>
<td>other urban</td>
<td>205</td>
<td>21.24</td>
<td>28.39</td>
</tr>
<tr>
<td>rural</td>
<td>691</td>
<td>71.61</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>965</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
```

SS may not be adequate for stratum specific analysis.
Probability Proportional to Size (PPS)

• PPS is very common in large surveys.
• In simplistic sense, the selection probability that a particular sampling unit will be selected in the sample is proportional to the size of the variable of interest (e.g., in a population survey, the population size of the sampling unit).
• PPS sampling provides self-weighted samples.
Sample selection probabilities at area levels

<table>
<thead>
<tr>
<th>Area</th>
<th># HH</th>
<th>Probability of any HH selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,000</td>
<td>1/5000 = 0.0002</td>
</tr>
<tr>
<td>2</td>
<td>20,000</td>
<td>1/20000 = 0.00005</td>
</tr>
<tr>
<td>3</td>
<td>3,000</td>
<td>1/3,000 = 0.00033333</td>
</tr>
<tr>
<td>4</td>
<td>10,000</td>
<td>1/10000 = .0001</td>
</tr>
</tbody>
</table>
Use of PPS

• when the populations of the sampling units vary, and

• to ensure that every element in the target population has an equal chance of being included in the sample (self weighted).
Steps in PPS Sampling:

- Creating a list of clusters with cumulative population size
- Selecting a systematic sample from a random start using a sampling interval,
- Please see the handout for an example
<table>
<thead>
<tr>
<th>Area</th>
<th># women (15-44)</th>
<th>Cumulative number</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,000</td>
<td>5,000</td>
<td>0 –5,000</td>
</tr>
<tr>
<td>2</td>
<td>20,000</td>
<td>25,000</td>
<td>5,001-25,000</td>
</tr>
<tr>
<td>3</td>
<td>3,000</td>
<td>28,000</td>
<td>25,001-28,000</td>
</tr>
<tr>
<td>4</td>
<td>10,000</td>
<td>38,000</td>
<td>28,001-38,000</td>
</tr>
<tr>
<td>5</td>
<td>18,000</td>
<td>56,000……</td>
<td>38,001-56,000</td>
</tr>
<tr>
<td>……</td>
<td>……</td>
<td>……</td>
<td>……</td>
</tr>
<tr>
<td>10</td>
<td>75,000</td>
<td>75,000</td>
<td></td>
</tr>
</tbody>
</table>

Step #2:
Systematic selection from the list
Some practical considerations

• Conceptually, quite similar to systematic sampling
• PPS is very attractive in practice because no weighting is required
• However, due to other reasons (missing responses), weighting may not be avoided.