1. In a high school in the United States, dietary counseling is being tested to measure the program’s long-term impact on student’s fat intake. Of the three hundred students at the school, 150 are randomized to receive five one-hour sessions of dietary counseling; the other 150 students receive no counseling.

 - Six months after the last counseling sessions, all students are asked to keep a food diary for one week
 - Each student’s average fat intake in grams is calculated at the end of this week
 - The results of this exercise are as follows:
Practice Problems

- Intervention group
 - $\bar{x}_1 = 54.8$ grams, $s_1 = 28.1$ grams, $n_1 = 146$

- Control group
 - $\bar{x}_2 = 62.8$ grams, $s_2 = 34.7$ grams, $n_2 = 142$

(Please note—follow up sample sizes differ slightly from initial sample size because of loss to follow up)

- The public-health question of interest is whether there is a difference in mean fat intake between the two groups, six months after the intervention ended. You are going to help answer this question:
 - Compute a p-value for testing the null of no association between counseling and average fat intake. Is this consistent with the confidence interval estimated in the section A problems?
Practice Problems

- To create a p-value for testing
 - $H_0 : \mu_2 - \mu_1 = 0$
 - $H_A : \mu_2 - \mu_1 \neq 0$

- We need to measure how far the sample mean difference of $\bar{x}_2 - \bar{x}_1 = 8 \text{ grams}$ is from the null value of 0 in terms of standard errors

- Recall: $\hat{SE} (\bar{x}_2 - \bar{x}_1) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

 \[
 = \sqrt{\frac{(28.1)^2}{146} + \frac{(34.7)^2}{142}} \approx 3.7 \text{ grams}
 \]
So the distance measure t is given by:

$$t = \frac{8 \text{ grams}}{3.7 \text{ grams}} \approx 2.2$$

So we have a result that is 2.2 standard errors above the mean of 0 on a normal curve (the sampling distribution is normal by the CLT). This would result in a p-value such that $0.01 < p < 0.05$.

So the result is statistically significant at the $\alpha=.05$ level, which is consistent with the 95% CI not including 0 from the last section problems.

To get an exact p-value we can appeal to the ttesti command in Stata.
Practice Problems

- **Stata results:**

  ```stata
  . ttesti 142 62.8 34.7 146 54.8 28.1
  
  Two-sample t test with equal variances
  
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs</td>
<td>Mean</td>
<td>Std. Err.</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>x</td>
<td>142</td>
<td>62.8</td>
<td>2.911959</td>
<td>34.7</td>
</tr>
<tr>
<td>y</td>
<td>146</td>
<td>54.8</td>
<td>2.325573</td>
<td>28.1</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>288</td>
<td>58.74444</td>
<td>1.869474</td>
<td>31.72603</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.715851</td>
<td>.6861162</td>
<td>15.31388</td>
</tr>
<tr>
<td>diff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
  
  diff = mean(x) - mean(y)   t = 2.1529
  Ho: diff = 0                  degrees of freedom = 286
  
  Ha: diff < 0  Ha: diff != 0  Ha: diff > 0
  Pr(T < t) = 0.9839  Pr(|T| > |t|) = 0.0322  Pr(T > t) = 0.0161
  ```
Practice Problems

- Notice, direction of comparison is arbitrary: control vs. intervention in Stata gives same results, in opposite direction.

```
. ttesti 146 54.8 28.1 142 62.8 34.7
```

Two-sample t test with equal variances

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>146</td>
<td>54.8</td>
<td>2.325573</td>
<td>28.1</td>
<td>50.2036 59.3964</td>
</tr>
<tr>
<td>y</td>
<td>142</td>
<td>62.8</td>
<td>2.911959</td>
<td>34.7</td>
<td>57.04326 68.55674</td>
</tr>
<tr>
<td>combined</td>
<td>288</td>
<td>58.74444</td>
<td>1.869474</td>
<td>31.72603</td>
<td>55.06483 62.42406</td>
</tr>
<tr>
<td>diff</td>
<td></td>
<td>-8</td>
<td>3.715851</td>
<td></td>
<td>-15.31388 -.6861162</td>
</tr>
</tbody>
</table>

```
diff = mean(x) - mean(y)
t = -2.1529
Ho: diff = 0
degrees of freedom = 286

Ha: diff < 0        Ha: diff != 0        Ha: diff > 0
Pr(T < t) = 0.0161  Pr(|T| > |t|) = 0.0322  Pr(T > t) = 0.9839
```