This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Section H

Small Sample Considerations for Confidence Intervals for Population Proportions
The Central Limit Theorem (CLT) is a powerful mathematical tool that gives several useful statistics including:

- The sampling distribution of sample proportions based on all samples of same size n is *approximately* normal.
- Mother/infant transmission example, placebo group:

 - CLT 95% CI: $(.158, .282) \approx (.16, .28)$

 $\rightarrow 16\%$ to 28%

 - Exact 95% CI: $(\text{requires computer, always correct})$

 From Öcii 183 40ó command

 \[95\% \text{ Conf. Interval}\]

 \[\text{\texttt{.160984 .2855248}}\]
The CLT based formula for a 95% CI is only approximate; it works very well if you have enough data in your sample.

The approximation works better the bigger $n \times \hat{p} \times (1 - \hat{p})$.

“Large sample” for binary outcomes is not only a function of total sample size n, but the split between “yes” and “no” outcomes.
Mother/Infant Transmission: AZT Group

- **Mother/infant transmission example, AZT group:**

 \[(n = 180, \hat{p} = \frac{13}{180} = .07) \]

- **CLT 95% CI:**
 (can be done by hand)

 \[(.032, .108) \approx (.03, .11) \]
 \[\rightarrow 3\% \text{ to } 11\% \]

- **Exact 95% CI:**
 (requires computer, always correct)

 From `ocii 180 130 command`

 [95% Conf. Interval]

 \[\begin{array}{cc}
 .0390137 & .1203358 \\
 \end{array} \]
Mother/Infant Transmission CIs

- In the placebo sample
 \[n \times \hat{p}_{\text{plac}} \times (1 - \hat{p}_{\text{plac}}) = \]
 \[183 \times .22 \times .78 \approx 31 \]

- In the AZT sample
 \[n \times \hat{p}_{\text{AZT}} (1 - \hat{p}_{\text{AZT}}) = \]
 \[180 \times .07 \times .93 \approx 12 \]
Notes on 95% Confidence Interval for Proportion

- You do not use the t-correction for small sample sizes like we did for sample means
 - We use exact binomial calculations

- Interpretation of 95% CIs exactly the same with either method
 - In real life, using computer will always give valid result
 - CLT only breaks down with “small” sample sizes
 - In testing situations you will not be required to do exact CIs!
Random sample of 16 patients on drug A: two of sixteen patients experience drug failure in first month

- CLT 95% CI: \(\hat{p} \pm 2 \times SE(\hat{p}) \rightarrow \)

\[
\frac{2}{16} \pm 2 \times \sqrt{\frac{(2/16) \times (1 - 2/16)}{16}} \rightarrow
\]

\((-0.05, 0.28)\)

- Exact 95% CI: (0.02, 0.38)

```
cii 16 2
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>.125</td>
<td>.0826797</td>
<td>.0155136 .3834762</td>
</tr>
</tbody>
</table>

```
-- Binomial Exact --
```

8