This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike License</u>. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.

Copyright 2009, The Johns Hopkins University and John McGready. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided "AS IS"; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

Section G

FYI: Sampling Behavior of Relative Risks/Odds Ratios

- The sampling behavior of ratios (like the RR, OR) can be quite skewed
 - The range of possible values for "positive" and "negative" associations are very different

- The sampling behavior of ratios (like the RR, OR) can be quite skewed
 - The range of possible values for "negative" associations

- The sampling behavior of ratios (like the RR, OR) can be quite skewed
 - The range of possible values for "positive" associations

0 1

The ranges are equal on the ln(Ratio) scale

The ranges are equal on the ln(Ratio) scale

Recall standard 2x2 table setup

Estimating CI for RR by Hand

In ratios and standard errors

$$ln(R\hat{R}) = ln(\frac{\hat{p}_1}{\hat{p}_2})$$

Standard error, using counts from 2x2 table

$$S\hat{E}(ln(R\hat{R})) = \sqrt{\frac{c}{a \times n_1} + \frac{d}{b \times n_2}}$$

$$ln(R\hat{R}) \pm 2 \times S\hat{E}(ln(R\hat{R}))$$

• To get 95% CI for RR, exponentiate endpoints of above

HIV/AZT Example

HIV/mother-infant transmission example

In ratios and standard errors

$$ln(R\hat{R}) = ln(\frac{\hat{p}_{AZT}}{\hat{p}_{Placebo}}) = ln(\frac{.07}{.22}) = ln(0.33) = -1.11$$

Standard error, using counts from 2x2 table

$$S\hat{E}(ln(R\hat{R})) = \sqrt{\frac{167}{13 \times 180} + \frac{143}{40 \times 183}} \approx .30$$

■ 95% CI for *ln(RR)*

 $-1.11 \pm 2 \times .30 \rightarrow (-1.71, -0.51)$

To get 95% CI for RR, exponentiate endpoints of above

$$(e^{-1.71}, e^{-0.51}) \approx (0.18, 0.60)$$

HIV/AZT Example

• 95% CI from Stata

. csi 13 40 167 143, or

	Exposed	Unexposed		Total			
Cases Noncases	13 167	40 143		53 310			
Total	180	183		363			
Risk	.0722222	.2185792	.14	60055			
	Point estimate		[95 +	% Conf.	Interval]		
Risk difference Risk ratio	146357 .3304167		21 .18	71766 29884	0755374 .5966235		
Prev. frac. ex. Prev. frac. pop Odds ratio	.6695833 .3320248 .2782934		.40 .14	45784	.8170116	(Corn	field)
-	c	chi2(1) =	15.59	Pr>chi	2 = 0.0001		

In ratios and standard errors

$$ln(O\hat{R}) = ln(\frac{\hat{p}_1/(1-\hat{p}_1)}{\hat{p}_2/(1-\hat{p}_2)})$$

Standard error, using counts from 2x2 table

$$S\hat{E}(ln(O\hat{R})) = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

• 95% CI for $ln(O\hat{R})$

$$ln(O\hat{R}) \pm 2 \times S\hat{E}(ln(O\hat{R}))$$

• To get 95% CI for OR, exponentiate endpoints of above

HIV/AZT transmission example

$$\ln(O\hat{R}) = \ln(\frac{.07/.93}{.22/.78}) \approx \ln(.28) = -1.27$$

Standard error, using counts from 2x2 table

$$S\hat{E}(ln(O\hat{R})) = \sqrt{\frac{1}{13} + \frac{1}{40} + \frac{1}{167} + \frac{1}{143}} \approx .34$$

■ 95% CI for *ln(OR̂)*

$$-1.27 \pm 2 \times .34 \rightarrow (-1.96, -0.60)$$

• To get 95% CI for OR, exponentiate endpoints of above $(e^{-1.96}, e^{-0.60}) \approx (0.14, 0.55)$

HIV/AZT Example

• 95% CI from Stata

```
. csi 13 40 167 143, or
```

	Exposed	Unexposed	Tot	al		
Cases Noncases	13 167	40 143	3	53		
Total	180	183	3	63		
Risk	.0722222	.2185792	.14600	55		
	Point estimate		[95% C	onf.	Interval]	
Risk difference Risk ratio Prev. frac. ex.	146357 .3304167 .6695833		21717 .18298 .40337	66 · 84 65	0755374 .5966235 .8170116	
Prev. frac. pop Odds ratio	.3320248 .2782934		14457	84	.5363045	(Cornfield)
-	(:hi2(1) =	15.59 Pr	>chi2	= 0.0001	