This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Simple Linear Regression

John McGready
Johns Hopkins University
Section A

Review: The Equation of a Line
The Equation of a Line

- Recall, from algebra, there are two values which uniquely define any line:
 - Y-intercept—where the line crosses the y-axis (when $x = 0$)
 - Slope—the “rise over the run”—how much y changes for each one unit change in x
The Equation of a Line

- Recall, from algebra, there are two values which uniquely define any line

- \(y = mx + b \)
 - \(b = \) y-intercept
 - \(m = \) slope
The Equation of a Line

- Of course statisticians must have their own notation!

- $y = b_o + b_1x$
 - $b_o =$ y-intercept
 - $b_1 =$ slope

- $y = \beta_o + \beta_1x$
 - $\beta_o =$ y-intercept
 - $\beta_1 =$ slope
The intercept, β_o

- The intercept β_o is the value of y when x is 0.
 - It is the point on the graph where the line crosses the y (vertical) axis, at the coordinate $(0, \beta_o)$.

$$y = \beta_o + \beta_1x$$
The slope β_1 is the change in y corresponding to a unit increase in x.

\[y = \beta_0 + \beta_1 x \]
The Slope, β_1

- The slope β_1 is the change in y corresponding to a unit increase in x

$$y = \beta_0 + \beta_1 x$$
The Slope, β_1

- The slope β_1 is the change in y corresponding to a unit increase in x.

- Another interpretation: β_1 is difference in y-values for $x+1$ compared to x.

- This change/difference is the same across the entire line.
The slope β_1 is the change in y corresponding to a unit increase in x.

$y = \beta_o + \beta_1 x$
The Slope, β_1

- The slope β_1 is the change in y corresponding to a unit increase in x: β_1 is difference in y-values for $x+1$ compared to x

- All information about the difference in the y-value for two differing values of x is contained in the slope!

- For example: two values of x three units apart will have a difference in y values of $3 \cdot \beta_1$
The Slope, β_1

- For example: two values of x three units apart will have a difference in y values of $3 \times \beta_1$
The Slope, β_1

- For example: two values of x three units apart will have a difference in y values of $3 \times \beta_1$ ($3\beta_1$).
The Slope, β_1

- The slope β_1 is the change in y corresponding to a unit increase in x: β_1 is difference in y-values for $x+1$ compared to x
 - If slope $\beta_1 = 0$, this indicates that there is no association: (i.e., the values of y are the same regardless of the values of x)
 - If slope $\beta_1 > 0$, this indicates that there is a positive association: (i.e., the values of y increase with increasing values of x)
 - If slope $\beta_1 < 0$, this indicates that there is a negative association: (i.e., the values of y decrease with increasing values of x)
The Slope, β_1

- The slope β_1 is the change in y corresponding to a unit increase in x:
 β_1 is difference in y-values for $x+1$ compared to x

![Graph showing different slopes]

- $\beta_1 > 0$
- $\beta_1 = 0$
- $\beta_1 < 0$
The Equation of a Line

- In linear regression situations, points don’t fit exactly to a line

- We estimate a line that relates the mean of an outcome \(y \) to a predictor \(x \)

\[
E[y] = \hat{\beta}_0 + \hat{\beta}_1 x
\]

- \(E[y] \) = estimated “expected” (mean) value of \(y \)
- \(\hat{\beta}_0 \) = estimated y-intercept
- \(\hat{\beta}_1 \) = estimated slope
The Equation of a Line

- \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) are called estimated regression coefficients.

- These two quantities are estimated using the data:
 - Line estimated is the line that “fits the data best.”

- Many times the equation is just written as the following:

\[
y = \hat{\beta}_0 + \hat{\beta}_1 x
\]

 or

\[
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x
\]
The Equation of a Line

- $\hat{\beta}_o$ and $\hat{\beta}_1$ are called estimated regression coefficients

- We will see that in a regression context, $\hat{\beta}_1$ is nothing more than estimated mean difference in y between two groups who differ by one unit in x
 - i.e., how much the mean of y changes for a one-unit increase in x