This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Logistic Regression

John McGready
Johns Hopkins University
Topics

- Making the case for another type of regression
- Simple logistic regression (LR)
- Estimation/inference in logistic regression
- Prediction with LR
Section A

Logarithms: A Short Review
Let’s Review Logarithms

- **Strict definition of a logarithm**
 - The logarithm to the base \(a \) of a number \(y \) is the number \(x \) such that \(a^x = y \)
 - \(x = \log_a y \)

- We will be dealing with logs to base \(e \), where \(e \) is the natural constant
 - If \(x = \log_e y \), then \(y = e^x \) (anti-log of \(x \), exponentiating \(x \))
 - \(\log_e y \) frequently written \(\ln(y) \)
 - In this class \(\log \) and \(\ln \) both refer to logarithm with base \(e \)
Let’s Review Logarithms

- Logarithms only exist for positive numbers
 - $0 < y < \infty$

- However, logarithms can be positive or negative

- The following properties are true for all logarithms, regardless of base
 - $-\infty < \log(y) < \infty$
 - $\log (1) = 0$
 - If $0 < y < 1$, $\log(y) < 0$
 - If $y > 1$, $\log(y) > 0$
Let’s Review Logarithms

- Examples with logarithms of base \(e \) (the statistics literature will use both \(\ln \) and \(\log \) to refer to logarithms of base \(e \))
 - \(\log(10) = 2.3 \quad \rightarrow \quad e^{2.3} = 10 \)
 - \(e^{-0.2} = 0.81 \quad \rightarrow \quad \log(0.81) = -0.2 \)
 - \(\ln(1.5) = 0.41 \quad \rightarrow \quad e^{0.41} = 1.5 \)
Let’s Review Logarithms

- Two important calculator keys:
 - \(\ln \) key
 - \(e^x \) key
For any two positive numbers A, B

- $\ln(A*B) = \ln(A) + \ln(B)$
- $\ln(A/B) = \ln(A) - \ln(B)$
For practice, prove the following to yourselves at home!

- \(\ln(12) = \ln(36) - \ln(3) \)
 \[= \ln(4) + \ln(3) \]
 \[= \ln(120) - \ln(10) \]

- \(\ln(100) = \ln(20) + \ln(5) \)
 \[= \ln(100,000) - \ln(1000) \]

- \(\ln(0.7) = \ln(7) - \ln(10) \)
 \[= \ln(35) - \ln(50) \]