This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike License</u>. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.

Copyright 2006, The Johns Hopkins University and Karl W. Broman. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided "AS IS"; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

Food consumption of rats

	La	ard
Gender	Fresh	Rancid
Male	709 679	592 538
	699	476
	657	508
Female	594	505
	677	539

	-	Г								
	1	2		Т	-			-	Г	
	*	*	M1	M2	F1	F2	1		2	-
Μ	*	*	*	*	*	*	Μ	F	Μ	F
	^	^	*	*	*	*	*	*	*	*
	*	*	*	*	*	*	*	*	*	*
F	*	*					*	*	*	*
	*	*								

In the lard example, we could consider the lard by gender groups as four different treatments, and carry out a standard one-way ANOVA.

Let

- r be the number of rows in the two-way ANOVA,
- c be the number of columns in the two-way ANOVA,
- n be the number of observations within each of those $r \times c$ groups.

One-way ANOVA table

source	sum of squares	df
between groups	$SS_{\text{between}} = n \sum_{i} \sum_{j} {(\bar{Y}_{ij\cdot} - \bar{Y}_{\cdot \cdot \cdot})^2}$	rc – 1
within groups	$SS_{within} = \sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \bar{Y}_{ij.})^2$	rc(n – 1)
total	$SS_{total} = \sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \bar{Y}_{})^2$	rcn – 1

Example

source	SS	df	MS	F	p-value
between	65904	3	21968	15.1	0.0012
within	11667	8	1458		

But this doesn't tell us anything about the separate effects of freshness and sex.

All sorts of means

	F	at	
Gender	Fresh	Rancid	
Male	695.67	535.33	615.50
Female	642.67	517.33	580.00
	669.17	526.33	597.75

This table shows the cell, row, and column means, plus the overall mean.

(The discussion today is like the analysis of two-dimensional tables, as opposed to one-dimensional tables.)

A picture

Two-way ANOVA table

source	sum of squares	df
between rows	$SS_{rows} = cn \sum_{i} (\bar{Y}_{i} - \bar{Y}_{})^2$	r — 1
between columns	$SS_{columns} = r n \sum_{j} (\bar{Y}_{\cdot j \cdot} - \bar{Y}_{})^2$	c – 1
interaction	SS _{interaction}	(r – 1)(c – 1)
error	$SS_{within} = \sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \bar{Y}_{ij.})^2$	rc(n – 1)

total	$SS_{total} = \sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \bar{Y}_{})^2$	rcn – 1
lotai	$OO_{total} = \sum_{i} \sum_{j} \sum_{k} (T_{ijk} T_{})$	1011

Example

source	sum of squares	df	mean squares
sex	3781	1	3781
freshness	61204	1	61204
interaction	919	1	919
error	11667	8	1458

The ANOVA model

Let Y_{ijk} be the kth item in the subgroup representing the ith group of treatment A (r levels) and the jth group of treatment B (c levels). We write

$$\mathbf{Y}_{\mathbf{ijk}} = \boldsymbol{\mu} + \alpha_{\mathbf{i}} + \beta_{\mathbf{j}} + \gamma_{\mathbf{ij}} + \epsilon_{\mathbf{ijk}}$$

The corresponding analysis of the data is

$$y_{ijk} = \bar{y}_{...} + (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}) + (y_{ijk} - \bar{y}_{ij.})$$

Towards hypothesis testing

source	mean squares	expected mean squares
between rows	$\frac{cn\sum_i{(\bar{Y}_{i\cdot\cdot}-\bar{Y}_{\cdot\cdot\cdot})^2}}{r-1}$	$\sigma^2 + \frac{cn}{r-1}\sum_i \alpha_i^2$
between columns	$\frac{rn\sum_{j}\left(\bar{Y}_{\cdot j \cdot}-\bar{Y}_{\cdot \cdot \cdot}\right)^{2}}{c-1}$	$\sigma^2 + \frac{rn}{c-1}\sum_j \beta_j^2$
interaction	$\frac{n\sum_{i}\sum_{j}{(\bar{Y}_{ij\cdot}-\bar{Y}_{i\cdot\cdot}-\bar{Y}_{\cdotj\cdot}+\bar{Y}_{\cdot\cdot\cdot})^2}}{(r-1)(c-1)}$	$\sigma^2 + rac{n}{(r-1)(c-1)}\sum_i \sum_j \gamma_{ij}^2$
error	$\frac{\sum_{i}\sum_{j}\sum_{k}\left(Y_{ijk}-\bar{Y}_{ij\cdot}\right)^{2}}{rc(n-1)}$	σ^2

This is for fixed effects, and equal number of observations per cell!

Example (continued)

source	SS	df	MS	F	p-value
Sex	3781	1	3781	2.6	0.1460
Freshness	61204	1	61204	42.0	0.0002
interaction	919	1	919	0.6	0.4503
error	11667	8	1458		

Interaction in a 2-way ANOVA model

Let Y_{ijk} be the kth item in the subgroup representing the ith group of treatment A (r levels) and the jth group of treatment B (c levels). We write

$$\mathsf{Y}_{\mathsf{ijk}} = \mu + \alpha_{\mathsf{i}} + \beta_{\mathsf{j}} + \gamma_{\mathsf{ij}} + \epsilon_{\mathsf{ijk}}$$

Interaction plots

The R function interaction.plot() lets you compare the cell means by treatments.

Assume treatment A has four levels and treatment B has three levels. The interaction plots could look like one of these:

Strain differences and daily differences in blood pH for five (r = 5) inbred strains of mice. Five (n = 5) mice from each strain were tested six times (c = 6) at one-week intervals.

Source	SS	df	MS	F	P-value
mouse strains	0.37	4	0.092	17.7	< 0.001
test days	0.050	5	0.010	1.9	0.13
interaction	0.10	20	0.0052	1.5	0.083
error	0.41	120	0.0034		

Two-way versus nested ANOVA revisited

	Strains					
Days	1	2	3	4	5	
1	*	*	*	*	*	
2	*	*	*	*	*	
3	*	*	*	*	*	
4	*	*	*	*	*	
5	*	*	*	*	*	
6	*	*	*	*	*	

			Strains		
	1	2	3	4	5
Days	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6
Mice	* * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *

ANOVA tables

	source	SS	df	MS	F
Correct:	tv	vo-way ar	nova		
	mouse strains	0.37	4	0.092	17.7
	test days	0.050	5	0.010	1.9
	interaction	0.10	20	0.0052	1.5
	error	0.41	120	0.0034	
	total	0.93	149		
Incorrect:	r	nested an	ova		
	mouse strains	0.37	4	0.092	14.8
	days within strains	0.15	25	0.0062	1.8
	error	0.41	120	0.0034	
	totol	0.03	1/0		

The following data were obtained in a study on energy utilization (in kcal/g) of the pocket mouse during hibernation at different temperatures.

Restricted food		Unrestric	ted food
8°C	18°C	8°C	18ºC
62.69	72.60	95.73	101.19
54.07	70.97	63.95	76.88
65.73	74.32	144.30	74.08
62.98	53.02	144.30	81.40
	46.22		66.58
	59.10		84.38
	61.79		118.95
	61.89		118.95

R is for rescue...

The computations for the ANOVA table get rather complicated if the numbers of observations per cell are not equal. However, you can simply use aov() to get the results.

> mouse.aov	<- a	ov(log(r	sp) ~ food	* temp,	data=mouse)
> anova(mou	se.ao	V)			
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
food	1	1.07	1.07	21.4	0.00016
temp	1	0.041	0.041	0.81	0.38
food:temp	1	0.050	0.050	1.0	0.33
Residuals	20	1.000	0.050		

Interaction plot

Two-way ANOVA without replicates

Below are the development periods (in days) for three strains of houseflies at seven densities.

		Strain	
Density	OL	BELL	bwb
60	9.6	9.3	9.3
80	10.6	9.1	9.2
160	9.8	9.3	9.5
320	10.7	9.1	10.0
640	11.1	11.1	10.4
1280	10.9	11.8	10.8
2560	12.8	10.6	10.7

ANOVA table

source	df	SS	MS
fly strains	2	2.79	1.39
condition	6	12.54	2.09
interaction	12	4.11	0.34
total	20		

We have 21 observations. That means we have no degrees of freedom left to estimate an error!

Interactions

density

Result

If we assume that there are no interactions, i.e., we assume

$$\mathbf{Y}_{\mathsf{ijk}} = \boldsymbol{\mu} + \boldsymbol{\alpha}_{\mathsf{i}} + \boldsymbol{\beta}_{\mathsf{j}} + \boldsymbol{\epsilon}_{\mathsf{ijk}}$$

we get the following results using aov() in R:

```
> fly.aov <- aov(rsp ~ strain + density, data=fly)</pre>
> anova(fly.aov)
                                      F value
             Df
                  Sum Sq
                           Mean Sq
                                                Pr(>F)
strain
              2
                    2.79
                               1.39
                                         4.07
                                                 0.045
                               2.09
                                         6.10
density
             б
                   12.54
                                                 0.004
                               0.34
                    4.11
Residuals
             12
```

Random within blocks

В	D	A	A	С	С
D	A	С	С	В	D
С	С	В	D	A	A
A	В	D	В	D	В

Example

Mean weight of 3 genotypes of beetles, reared at a density of 20 beetles per gram of flour. Four series of experiments represent blocks.

	genotype				
block	++	+b	bb		
1	0.958	0.986	0.925		
2	0.971	1.051	0.952		
3	0.927	0.891	0.829		
4	0.971	1.010	0.955		

We must assume the effects of the genotypes is the same within each block.

Interaction plot

genotype

ANOVA table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
genotype	2	0.0097	0.0049	7.0	0.027
block	3	0.021	0.0071	10.2	0.009
Residuals	б	0.0042	0.00070		