This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Section F

The Theoretical Sampling Distribution of the Sample Proportion and Its Estimate Based on a Single Sample
In the previous section we reviewed the results of simulations that resulted in estimates of what was formally called the sampling distribution of a sample proportion.

The sampling distribution of a sample proportion is a theoretical probability distribution. It describes the distribution of all sample proportions from all possible random samples of the same size taken from a population.
In real research it is impossible to estimate the sampling distribution of a sample mean by actually taking multiple random samples from the same population (no research would ever happen if a study needed to be repeated multiple times) to understand this sampling behavior.

Simulations are useful to illustrate a concept, but not to highlight a practical approach!

Luckily, there is some mathematical machinery that generalizes some of the patterns we saw in the simulation results.
The Central Limit Theorem (CLT)

- The Central Limit Theorem (CLT) is a powerful mathematical tool that gives several useful results
 - The sampling distribution of sample proportions based on all samples of same size n is approximately normal
 - The mean of all sample proportions in the sampling distribution is the true mean of the population from which the samples were taken, p
 - The standard deviation in the sample proportions of size n is equal to $\sqrt{\frac{p \times (1-p)}{n}}$
 - This is often called the standard error of the sample proportion and sometimes written as $SE(\hat{p})$
Example: Blood Pressure of Males

- Population distribution of individual insurance status
 - True proportion $p = 0.8$

<table>
<thead>
<tr>
<th>Sample Sizes</th>
<th>Means of 500 Sample Proportions</th>
<th>Means of 5000 Sample Proportions</th>
<th>SD of 500 Sample Proportion</th>
<th>SD of 5000 Sample Proportions</th>
<th>SD of Sample Proportions (SE) by CLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 20$</td>
<td>0.805</td>
<td>0.799</td>
<td>0.094</td>
<td>0.090</td>
<td>0.089</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>0.801</td>
<td>0.799</td>
<td>0.041</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>0.799</td>
<td>0.80</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
</tr>
</tbody>
</table>
Recap: CLT

- So the CLT tells us the following:
 - When taking a random sample of binary measures of size n from a population with true proportion p, the theoretical sampling distribution of sample proportions from all possible random samples of size n is:

$$\sigma_{\hat{p}} = SE(\hat{p}) = \sqrt{\frac{p \times (1 - p)}{n}}$$
So what good is this info?

Well using the properties of the normal curve, this shows that for most random samples we can take (95%), the sample proportion \(\hat{p} \) will fall within 2 SEs of the true proportion \(p \):
So AGAIN what good is this info?
- We are going to take a single sample of size n and get one \hat{p}
- So we won’t know p and if we did know p why would we care about the distribution of estimates of p from imperfect subsets of the population?
CLT: So What?

- We are going to take a single sample of size n and get one \hat{p}.

- But for most (95%) of the random samples we can get, our \hat{p} will fall within +/- 2 SEs of p.
We are going to take a single sample of size n and get one \hat{p}.

So if we start at \hat{p} and go 2 SEs in either direction, the interval created will contain p most (95 out of 100) of the time.
Estimating a Confidence Interval

- Such an interval is called a 95% confidence interval for the population proportion p

- Interval given by $\hat{p} \pm 2SE(\hat{p}) \rightarrow \bar{x} \pm 2 \times \sqrt{\frac{p \times (1-p)}{n}}$

- Problem: we don’t know p
 - Can estimate with \hat{p}, will detail this in next section

- What is interpretation of a confidence interval?
Interpretation of a 95% Confidence Interval (CI)

- Laypersons’ range of “plausible” values for true proportion
 - Researcher never can observe true mean p
 - \hat{p} is the best estimate based on a single sample
 - The 95% CI starts with this best estimate and additionally recognizes uncertainty in this quantity

- Technical
 - Were 100 random samples of size n taken from the same population, and 95% confidence intervals computed using each of these 100 samples, 95 of the 100 intervals would contain the values of true proportion p within the endpoints
Notes on Confidence Intervals

- Random sampling error
 - Confidence interval only accounts for random sampling error, not other systematic sources of error or bias
Are all CIs 95%?
- No
- It is the most commonly used
- A 99% CI is wider
- A 90% CI is narrower

To change level of confidence adjust number of SE added and subtracted from \hat{p}
- For a 99% CI, you need ± 2.6 SE
- For a 95% CI, you need ± 2 SE
- For a 90% CI, you need ± 1.65 SE
Summary

- What did we see with this set of examples

- A couple of trends:
 - Distribution of sample proportions tended to be approximately normal—even when original—and individual level data was not (binary outcome)
 - Variability in sample mean values decreased as the size of the sample each proportion was based upon increased
Clarification

- As with means for continuous data, variation in proportions values tied to the size of each sample selected in our exercise: NOT the number of samples