This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Section C

Simple Linear Regression: More Examples
Example: Hb and PCV

- Linear regressions performed with a single predictor (one x) are called simple linear regressions.

- Linear regressions performed with more than one predictor (more than one x) are called multiple linear regressions.

- In this set of lectures, we are dealing with simple linear regression. In this section we will give three more examples.
Example: Hb and PCV

- Data on laboratory measurements on a random sample of 21 clinical patients, 20-67 years old

- Question—what is the relationship between hemoglobin levels (g/dL) and packed cell volume (percent of packed cells)

- Data
 - Hemoglobin (Hb): mean 14.1 g/dl, SD 2.3 g/dL, range 9.6 g/dL - 17.1 g/dL
 - Packed Cell Volume (PCV): mean 41.1%, SD 8.1%, range 25% to 55%
Visualizing Hb and PCV Relationship

- Scatterplot display

Hemoglobin and Packed Cell Volume
21 Subjects, 20-67 Years Old
Example: Hb and PCV

- Equation of regression line relating estimated mean hemoglobin (g/dL) to packed cell volume: from Stata
 - \(\hat{y} = 5.77 + 0.20x \)

- Here, \(\hat{y} \) = estimated average hemoglobin (like what we previously would call \(\bar{y} \)), \(x \) = height, \(\hat{\beta}_0 = 5.77 \) and \(\hat{\beta}_1 = 0.20 \)

- This is the estimated line from the sample of 21 subjects
Example: Hb and PCV

- Equation of regression line relating estimated mean hemoglobin (g/dL) to packed cell volume: from Stata
 - $\hat{y} = 5.77 + 0.20x$

- $\hat{\beta}_1 = 0.20$: what are the units?

- Well, \hat{y} is in g/dL, x in percent; so $\hat{\beta}_1$ is in units if g/dL per percent
 - This result estimates that the mean difference in hemoglobin levels for two groups of subjects who differ by 1% in PCV is 0.20 g/dL: subjects with greater PCV have greater Hb levels in average
Visualizing Hb and PCV Relationship

- Scatterplot display with regression line

Hemoglobin and Packed Cell Volume
21 Subjects, 20-67 Years Old

\[\hat{y} = 5.77 + 0.20x \]
Example: Hb and PCV

- What is the average difference in Hb levels for subjects with PCV of 40% compared to subjects with 32%?

- $\hat{\beta}_1 = 0.20$: compares groups of subjects who differ in PCV by 1% (it is positive, so those with the greater PCV have hemoglobin levels of 0.20 g/dL greater on average).

- To compare subjects with PCV of 40% versus subjects with 32%, which is an eight unit difference in x, take

$$8 \times \hat{\beta}_1 = 8 \times 0.20 = 1.6 \text{ g/dL}$$
Example: Hb and PCV

- What is estimated Hb level for subjects with PCV of 41%?

\[\hat{y} = 5.77 + 0.20x \]

- Plugging 41% into the equation:

\[\hat{y} = 5.77 + 0.20 \times 41 = 13.97 \text{ g/dL} \]
Example: Wages and Education Level

- Data on hourly wages from a random sample of 534 U.S. workers in 1985

- Question: what is the relationship between hourly wage (U.S. $) and years of formal education

Data:
- Hourly wages: mean $9.04/hour, SD $5.13/hour, range $1.00/hour-$44.50/hr
- Year of formal education: mean 13.0 years, SD 2.6 years, range 2 years-18 years
Visualizing Wages and Education Level Relationship

- Scatterplot display

Wages and Education Level
Random Sample of 534 U.S. Workers, 1985
Example: Wages and Education Level

- Equation of regression line relating estimated mean hourly wages (U.S. $) to years of education: from Stata
 \[\hat{y} = -0.75 + 0.75x \]

- Here, \(\hat{y} \) = estimated average hourly wage (like what we previously would call \(\bar{y} \)), \(x \) = years of formal education, \(\hat{\beta}_0 = -0.75 \) and \(\hat{\beta}_1 = 0.75 \)

- This is the estimated line from the sample of 534 subjects
Visualizing Wages and Education Level Relationship

- Scatterplot display with regression line
Example: Arm Circumference and Sex

- Data on anthropomorphic measures from a random sample of 150 Nepali children (0, 12) months old

- Question: what is the relationship between average arm circumference and sex of a child

- Data:
 - Arm circumference: mean 12.4 cm, SD 1.5 cm, range 7.3 cm - 15.6 cm
 - Sex: 51% female
Visualizing Arm Circumference and Sex Relationship

- Scatterplot display

![Arm Circumference and Child's Sex](image)

Arm Circumference and Child's Sex
150 Nepali Children < 12 Months

- Scatterplot display
Boxplot display

Arm Circumference and Child's Sex
150 Nepali Children < 12 Months

Male (x=0) Female (x=1)
Example: Arm Circumference and Sex

- Here, \(y \) is arm circumference, a continuous measure; \(x \) is not continuous, but binary (male or female)

- How to handle sex as an “\(x \)” in regression?
 - One possibility is \(x = 0 \) for male children and \(x = 1 \) for female children

- The equation we will estimate

\[
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x
\]

- How to interpret regression coefficients?
Example: Arm Circumference and Sex

- Notice, this equation is only estimating two values: mean arm circumference for male children, and the mean for female children.

- For female children: \(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \times 1 = \hat{\beta}_0 + \hat{\beta}_1 \)

- For male children: \(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \times 0 = \hat{\beta}_0 \)

- So \(\hat{\beta}_1 \) is still a slope estimating mean difference in \(y \) for one-unit difference in \(x \)
 - But only possible one-unit difference is 1 (females) to 0 (males)

- \(\hat{\beta}_0 \) actually has substantive meaning in this example; it is the average arm circumference for male children.
Example: Arm Circumference and Sex

- The resulting equation $\hat{y} = 12.5 + -0.13x$

- $\hat{\beta}_1 = -0.13$: the estimated mean difference in arm circumference for female children compared to male children is -0.13 cm; female children have lower arm circumference by 0.13 cm on average.

- $\hat{\beta}_o = 12.5$: the mean arm circumference for male children is 12.5 cm.
Visualizing Arm Circumference and Sex Relationship

- Scatterplot display with regression line