Malariology: Biology of the Parasite

Nirbhay Kumar, PhD
Impact

• Worldwide
 – >2.3 billion people at risk
 – 300 to 500 million cases annually
 – 1.5 to 2.7 million deaths annually

One death every 20 to 30 seconds, somewhere in the world
Malaria: *Plasmodium* Species of Human Disease

- *P. falciparum* (malignant, TERTIAN)
- *P. vivax* (benign, TERTIAN)
- *P. ovale* (TERTIAN)
- *P. malariae* (QUARTAN)

Malaria parasites are highly species specific. No animal reservoir for human malaria parasites.
The Infective stage (SPOROZOITE) transmitted by female anopheline mosquito

Source: Nirbhay Kumar
• Sporozoites invade hepatocytes
 – \(t_{\frac{1}{2}} < 30 \text{ minutes} \)
• Undergo asexual development over the next 7-10 days
• Results in 20,000 – 30,000 fold increase in parasite numbers
• Merozoites released then invade RBCs (erythrocytes)
• \(P. \text{ vivax} \) and \(P. \text{ ovale} \) parasites produce hypnozoites (dormant parasites) which are responsible for relapse of malaria
Relapse versus Recrudescence

• Relapse: (*P. vivax* and *P. ovale*)
 – Presence of dormant hypnozoites in the liver

• Recrudescence: (All 4 species)
 – Reappearance of blood forms of parasites (drug resistance)
A Typical Asexual Cycle

• Merozoites attach to rbc, orient to apical end, invaginate into RBC by forming rbc membrane pocket called parasitophorous vacuole.

• Merozoites invade RBCs and develop into ‘RING’ forms

• Rings develop into TROPHOZOITES (contain microscopic heme crystal)

• Trophozoites replicate nuclear material to form SCHIZONTs (form with more than one nucleus)

• RBCs are lysed and Merozoites (12-32) released continue the RBC cycle

• (Tertian malaria – 48 hour cycle for Pf, Pv, Po), and (Quartan malaria–72 hour cycle for Pm)
Early Stages of Red Blood Cell Invasion by the Malaria Merozoite

1. Initial Attachment & Reorientation
 - P. vivax
 - PvRBP-1
 - PvRBP-2
 - Pyoellii
 - Py235?
 - MSP-1 complex?
 - AMA-1?
 - MAEBL?

2. Irreversible Attachment & Junction Formation
 - Secretion of microneme contents (e.g., DBL-EBP)
 - Rhopty discharge
 - High affinity adhesion mediated by DBL-EBP?
 - Inward motion driven by actomyosin motor

3. Parasitophorous Vacuole Formation & Invasion
 - Further rhoptry and microneme discharge
 - Release of dense granule contents (PfSUB-1 & PfSUB-2)
 - Vectorial trafficking, proteolytic processing & shedding of DBL-EBP
 - Proteolytic processing/shedding of MSP-1 complex

Adapted by CTLT from Parasitology Today
Classic Every Other Day Malaria Fevers

“Tertian” *P. vivax*

Adapted from Thayer and Hewetson
Johns Hopkins Hosp Reports V 1895 p. 3-224
Typical Malaria Paroxysms

• Three stages
 – **COLD**: Chilly feeling followed by rising body temperature (headache/nausea/vomit)

 – **HOT**: High temperature 39 to 40.5 °C

 – **SWEATING**: Falling temperature is accompanied by sweating (fatigue and weakness)
Pathological Complications of P. falciparum Malaria

- **Uncomplicated**
 - Fever
 - Parasitemia
 - Anemia

- **Complicated (severe) malaria**
 - Cerebral malaria (coma)
 - Severe anemia
 - Hypoglycemia
 - Renal failure
 - Electrolyte disturbances
 - Jaundice
 - Lactic acidosis
 - Etc. Etc.
Knobs on surface

Adherent parasites in brain
Cytoadherence (Sequestration)

• Binding of **TROPHOZOITE** & **SCHIZONT** infected RBCs to endothelial cells in post-capillary venuels in the deep tissues.

• The binding is thought to be mediated by parasite proteins in the electron-dense structures defined as **KNOBS**

Rosetting

• Binding of RBCs containing parasites (mixed stages) with uninfecte RBCs
Malaria Parasites Use Two Hosts

• A **human** where it causes the disease malaria

• A **mosquito** which it uses as a vector
Sexual Development

Asexual Stages -> Sexual Stages

Gametocyte (male and female sexual stages) development is crucial to transmission
Exflagellation (Emergence of Male Gametes)

Female Gametocyte

Male Gametocyte

GAMETES

ZYGOTE

8 male gametes from a single gametocytes in <10 min (XANTHURENIC ACID – exflagellation factor)

Source: Nirbhay Kumar
Innate Resistance Mechanisms
(Nonimmunological Mechanisms of Refractoriness)

Hemoglobinopathies (>300 in humans, most due to a single amino acid change in the hemoglobin molecule)

- Hbs (sickle cell Hb), Autosomal recessive (β-6 GLU to VAL)
- HbC (β-6 GLU to LYS)
- HbE (β-26 GLU to LYS)
- HbF (α/γ as compared to α/β in normal Hb)
- The Thalessemias (imbalance of α and β globin chains)

Cont. . .
Innate Resistance Mechanisms (Nonimmunological Mechanisms of Refractoriness)

RBC enzyme deficiency
- Glucose-6-phosphate dehydrogenase (G6PD)

RBC surface components
- Glycophorins (P. falciparum)
- Duffy blood group (P. vivax) (West Africana are Duffy –ve)

RBC Cytoskeleton abnormality
- (abnormal Band 3 protein)
- Ovalocytosis (elliptical red cells, PNG)

Cont. . .
Innate Resistance Mechanisms
(Nonimmunological Mechanisms of Refractoriness)

Sickle-cell hemoglobin (HbS)

- SC – trait in heterozygotes (AS)
- SC- anemia in homozygotes (SS) (Fatal prior to reproductive age)
- Gene frequency of AS is >>20% in Nigerian population and ~10% in Afro-Americans

PARASITES DIE DUE TO LACK OF OXYGEN and OTHER CAUSES