Session 2
A Conceptual Framework for Studying Fertility

Social and Economic Aspects of Fertility Decline

Population, Family and Reproductive Health
380.655
AY 2008-2009
Objectives of the lecture

• After listening to this lecture and reading the accompanying references students will be able to:
 – Distinguish between natural and controlled fertility
 – Describe the proximate determinants framework for studying fertility
Objectives of the lecture

• After listening to this lecture and reading the accompanying references students will be able to:
 – Distinguish between natural and controlled fertility
 – Describe the proximate determinants framework for studying fertility
Fertility is always very variable

- On the next slide the ASFRs from several relatively high fertility populations are plotted:
 - Hutterites (1920) TFR~ = 10.9
 - Normandy (late 17th century) TFR~ = 8.3
 - Taiwan (1900) TFR ~ = 7.0
 - India (1945) TFR~ = 6.2
ASFRs for four high fertility populations

Age (years)	Rate per 1000 women
20-24 | 25-29 | 30-34 | 35-39 | 40-44 | 45-49

- Netherlands 1921-1930
- Normandy 1674-1742
- Taiwan 1900
- India 1948
A Useful Distinction to make is between “natural” and “controlled” fertility

- Fertility rates VARY across populations or across time within a population
- This is true of both populations with natural as well as population with controlled fertility
- That is, natural does not mean high and controlled does not mean low, although natural fertility populations tend to be higher on average than controlled fertility populations
 - Point of the distinction is that there is ALWAYS variation across populations and levels are uninformative
Natural Fertility

• The type of marital fertility pattern that emerges when people do not change the behaviors that underlie fertility as a result of how many children they have

• Examples of non-parity specific fertility control:
 – Post-partum abstinence
 – Breastfeeding
 – Taboos about grandmothers having children
Controlled Fertility

• The type of marital fertility pattern that emerges when people do change the behaviors that underlie fertility as a result of how many children they have

• Examples:
 – Have a goal of how many children they want
 – Decide that they have enough children
 – “replace” children who die
Differences in the shape of the graph when you plot fertility rates by age (ASFRs)

- Under natural fertility, the ASFRs decline as a result of declining fecundity alone: convex shape
- Under controlled fertility, the ASFRs at older ages are lower than younger ages: concave shape
Can tell whether or not a population is using parity specific behavior by shape, not level

- Graph shows three natural and three controlled fertility populations, all of which have different fertility levels
Age Specific Marital Fertility Rates (Births per 1,000 Married Women)

- Hutterites, 1921-1930
- Crulai, 1674-1742
- Yunlin - Taiwan, ca. 1900
- U.S.A., 1960
- Sweden, 1961-1965
- Bulgaria, 1968

Another way to see this

In the next graph, the ASFRs for the same six populations are plotted again, but this time, the values plotted are the ratio of the ASFR for a given age group with the 20-24 rate for the same population times 100

So the value for 20-24 will always be 100
Index Values of Age Specific Marital Fertility Rates with 20-24 Rate = 100

- Hutterites, 1921-1930
- Crulai, 1674-1742
- Yunlin - Taiwan, ca. 1900
- U.S.A., 1960
- Sweden, 1961-1965
- Bulgaria, 1968

Coale’s measure of m

• Calculated the deviation of ASFRs from the 20-24 ASFR for 43 controlled fertility populations
• Took the average
• If a population’s ASFRs deviate in exactly the same way as this average, then \(m = 1 \)
• If a population follows a natural fertility pattern, \(m = 0 \)
• If \(m \) is very large, then the fall-off in fertility is very great (i.e. larger than the average of the 43 countries)
Values of m, the Index of Fertility Control

m goes up when populations make the transition from natural to controlled fertility
Values of the Fertility Control (m) for Selected Countries: Average Values of m

Another measure is M

- The ratio of the population of interest’s ASFR for 20 to 24 to the natural fertility population that was used as a reference
- This is a level factor
Table on the following page

- Presents data on m and M measures for a variety of populations
 - Sri Lanka in 1953 has one of the highest m’s (0.44)
 - M=0.86
 - Bulgaria has one of the lowest m’s (0.02)
 - M=0.83
<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Source</th>
<th>M (Index of fertility level)</th>
<th>m for individual age groups</th>
<th>Standard deviation</th>
<th>25-29</th>
<th>30-34</th>
<th>35-39</th>
<th>40-44</th>
<th>45-49</th>
</tr>
</thead>
<tbody>
<tr>
<td>European populations</td>
<td></td>
</tr>
<tr>
<td>7 south and central French villages</td>
<td>17-18th Century</td>
<td>A</td>
<td>0.94</td>
<td>0.02</td>
<td>0.08</td>
<td>0.11</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
<td>n.a.</td>
</tr>
<tr>
<td>6 north French villages</td>
<td>17-18th Century</td>
<td>A</td>
<td>1.15</td>
<td>0.00</td>
<td>0.08</td>
<td>0.09</td>
<td>0.05</td>
<td>0.01</td>
<td>0.12</td>
<td>n.a.</td>
</tr>
<tr>
<td>14 NW French villages</td>
<td>17-18th Century</td>
<td>A</td>
<td>1.06</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
<td>n.a.</td>
</tr>
<tr>
<td>8 German villages</td>
<td>18th Century</td>
<td>A</td>
<td>0.97</td>
<td>0.00</td>
<td>0.04</td>
<td>0.06</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>n.a.</td>
</tr>
<tr>
<td>Quebec</td>
<td>18th Century</td>
<td>B</td>
<td>1.11</td>
<td>0.06</td>
<td>0.08</td>
<td>0.00</td>
<td>0.13</td>
<td>0.14</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>Alskog (Swedish village)</td>
<td>1745-1820</td>
<td>S</td>
<td>0.79</td>
<td>0.13</td>
<td>0.10</td>
<td>0.04</td>
<td>0.22</td>
<td>0.19</td>
<td>0.20</td>
<td>0.09</td>
</tr>
<tr>
<td>National statistics</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1901-05</td>
<td>C</td>
<td>0.83</td>
<td>0.02</td>
<td>0.34</td>
<td>0.36</td>
<td>0.05</td>
<td>0.24</td>
<td>0.09</td>
<td>0.63</td>
</tr>
<tr>
<td>Denmark</td>
<td>ca 1865*</td>
<td>D</td>
<td>0.97</td>
<td>0.26</td>
<td>0.05</td>
<td>0.26</td>
<td>0.33</td>
<td>0.30</td>
<td>0.19</td>
<td>0.23</td>
</tr>
<tr>
<td>Finland</td>
<td>1871-80</td>
<td>E</td>
<td>0.98</td>
<td>0.24</td>
<td>0.13</td>
<td>0.43</td>
<td>0.28</td>
<td>0.19</td>
<td>0.07</td>
<td>n.a.</td>
</tr>
<tr>
<td>Norway</td>
<td>1871-75†</td>
<td>F</td>
<td>0.93</td>
<td>0.05</td>
<td>0.21</td>
<td>0.06</td>
<td>0.14</td>
<td>0.06</td>
<td>0.05</td>
<td>0.46</td>
</tr>
<tr>
<td>Sweden</td>
<td>1751-1800</td>
<td>G</td>
<td>1.00</td>
<td>0.23</td>
<td>0.20</td>
<td>0.45</td>
<td>0.28</td>
<td>0.33</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Asian populations</td>
<td></td>
</tr>
<tr>
<td>China – rural</td>
<td>1930</td>
<td>H</td>
<td>0.57</td>
<td>0.06</td>
<td>0.09</td>
<td>0.05</td>
<td>0.08</td>
<td>0.15</td>
<td>0.13</td>
<td>0.04</td>
</tr>
<tr>
<td>Comilla (Bangladesh)</td>
<td>1963-64</td>
<td>I</td>
<td>0.71</td>
<td>0.13</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.22</td>
<td>0.15</td>
<td>n.a.</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1961</td>
<td>J</td>
<td>1.02</td>
<td>0.61</td>
<td>0.11</td>
<td>0.55</td>
<td>0.68</td>
<td>0.32</td>
<td>0.66</td>
<td>n.a.</td>
</tr>
<tr>
<td>Mysore (India)†</td>
<td>1965-70</td>
<td>L</td>
<td>0.77</td>
<td>0.17</td>
<td>0.06</td>
<td>0.17</td>
<td>0.23</td>
<td>0.13</td>
<td>0.08</td>
<td>n.a.</td>
</tr>
<tr>
<td>Indonesia – rural†</td>
<td>17-19th Century</td>
<td>M</td>
<td>0.84</td>
<td>0.18</td>
<td>0.19</td>
<td>0.44</td>
<td>0.27</td>
<td>0.23</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>4 Japanese villages</td>
<td>1925</td>
<td>N</td>
<td>0.74</td>
<td>0.21</td>
<td>0.03</td>
<td>0.25</td>
<td>0.21</td>
<td>0.19</td>
<td>0.24</td>
<td>0.18</td>
</tr>
<tr>
<td>Japan</td>
<td>1961</td>
<td>O</td>
<td>0.81</td>
<td>0.03</td>
<td>0.08</td>
<td>0.10</td>
<td>0.09</td>
<td>0.12</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Korea</td>
<td>1957</td>
<td>P</td>
<td>0.96</td>
<td>0.25</td>
<td>0.25</td>
<td>0.31</td>
<td>0.41</td>
<td>0.40</td>
<td>0.34</td>
<td>0.20</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1963-65</td>
<td>Q</td>
<td>0.64</td>
<td>0.24</td>
<td>0.41</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.04</td>
<td>1.06</td>
</tr>
<tr>
<td>Philippines</td>
<td>1963-67</td>
<td>R</td>
<td>0.94</td>
<td>0.19</td>
<td>0.08</td>
<td>0.17</td>
<td>0.25</td>
<td>0.24</td>
<td>0.26</td>
<td>0.04</td>
</tr>
<tr>
<td>Singapore</td>
<td>1957</td>
<td>P</td>
<td>1.00</td>
<td>0.30</td>
<td>0.06</td>
<td>0.26</td>
<td>0.32</td>
<td>0.36</td>
<td>0.35</td>
<td>0.19</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1953</td>
<td>P</td>
<td>0.86</td>
<td>0.44</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.45</td>
<td>0.78</td>
<td>0.47</td>
</tr>
<tr>
<td>Taiwan</td>
<td>1956</td>
<td>P</td>
<td>0.82</td>
<td>0.02</td>
<td>0.13</td>
<td>0.08</td>
<td>0.05</td>
<td>0.09</td>
<td>0.07</td>
<td>0.25</td>
</tr>
<tr>
<td>Thailand</td>
<td>1960</td>
<td>P</td>
<td>1.02</td>
<td>0.11</td>
<td>0.23</td>
<td>0.31</td>
<td>0.29</td>
<td>0.15</td>
<td>0.12</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Interest in explaining why populations have different levels of fertility has driven a lot of research

- In particular, scholars and policy makers have been interested in why fertility declines
- In light of the variability in fertility, they needed a simple way to distinguish contracepting pops from non-contracepting pops
Next Slide shows a case where these ideas really were illuminating

- Taiwan from 1961 through 1984
 - 1961 is natural
 - After that is controlled
 - Note that early fertility actually goes up
Criticism of the natural vs. controlled distinction

• Regards variation within these two categories as uninteresting
 – Assume the nature of the transition is the same for those whose natural pattern had a TFR of 4 as those whose natural pattern had a TFR of 7
• If people practiced parity specific fertility control by spacing, the m index will not detect it
For example, in 19th century USA

- Anderton and Bean compared four cohorts that span the transition from high to low fertility
- They find evidence that Americans in the 1800s reduced family size through spacing
Mean Birth Interval (-17.5 Months) by Women’s Birth Cohorts and Parity

Objectives of the lecture

- After listening to this lecture and reading the accompanying references students will be able to:
 - Distinguish between natural and controlled fertility
 - Describe the proximate determinants framework for studying fertility
The Proximate Determinants Framework for Studying Fertility

- People began studying fertility in the 1950s
- Before concern about population growth
- Part of Modernization Theory
 - A set of social science ideas developed as former colonial societies began to be of interest to European scholars
Kingsley Davis and Judith Blake

• 1950s
• The “intermediate variables” approach
• First formal statement that the broad and sweeping social phenomena that people were attempting to link to fertility change could not affect fertility directly
• For example, many have linked economic development with low fertility
 – When the GNP changes, women don’t magically become less able to conceive by osmosis
Social
Economic
Cultural

Exposure to sex
Exposure to conception
Successful gestation

Fertility

Big Sweeping Factors
Intermediate Factors
Outcome
Factors Affecting Exposure to Sex

- Formation and Dissolution of Sexual Unions
 - Age at entry into Sexual Union
 - Permanent Celibacy
 - Time Spent between or after Unions
- Exposure to Coitus within Unions
 - Voluntary abstinence
 - Involuntary abstinence
 - Coital Frequency
Factors Affecting Exposure to Conception

- Involuntary Infecundity
- Use of Contraception
- Voluntary Infecundity (sterilization)
Factors Affecting Gestation

- Involuntary fetal mortality (miscarriage)
- Voluntary fetal mortality (abortion and infanticide)
Social and Economic Institutions

• Davis and Blake argued that pre-industrial populations evolved social and economic institutions to produce sufficient fertility to overcome high mortality

• This does not always mean social and economic institutions that promote the highest possible fertility
 – Polygyny and post-partum abstinence (insured that children were not closely spaced, probably lowered infant mortality)
 – European marriage patterns (insured that children were born to the most prosperous people)
How did John Bongaarts improve on Davis and Blake’s model?

• D&B missed breastfeeding entirely
• Bongaarts attempted to quantify the intermediate variables, which he re-named proximate determinants, by proposing specific measures and using them (the measures) to predict the TFR, using real data
 – Flaws in the data and the project should not take away from the importance of the attempt
Bongaarts Proximate Determinants Model

A. Exposure to intercourse
 1. Proportions of women married by age

B. Exposure to conception
 2. Contraceptive use and effectiveness
 3. Duration of post-partum infecundability
 4. Frequency of intercourse
 5. Permanent sterility

C. Successful gestation and parturition
 6. Spontaneous intrauterine mortality
 7. Induced intrauterine mortality
Bongaarts criteria for evaluating the importance of the proximate determinants

- Sensitivity
 - How big an impact does the factor have?
- Variability
 - How much variability does the factor explain
Results

• Proportion married and contraception score high on both sensitivity and variability
• Post-partum infecundability and abortion score moderately on sensitivity and very high on variability
• Other three (intrauterine mortality, sterility and coital frequency) are, at best, moderate on one
Results

• Bongaarts focused on proportion married, contraception, post-partum infecundability and abortion
• Developed a mathematical model where one calculates the TFR by multiplying maximum fertility \((15.3^*)\) by indices of these four factors that range in value from 0 to 1
The four indexes are defined as follows:

$C_m = \text{index of marriage (equals 1 if all women of reproductive age are married and 0 in the absence of marriage)}$

$C_e = \text{index of contraception (equals 1 in the absence of contraception and 0 if all fecund women use 100% effective contraception)}$

$C_a = \text{index of induced abortion (equals 1 in the absence of induced abortion and 0 if all pregnancies are aborted)}$

$C_i = \text{index of postpartum infecundability (equals 1 in the absence of lactation and postpartum abstinence and 0 if the duration of infecundability is infinite)}$
\[TFR = C_m \times C_c \times C_a \times C_i \times TF \]
Objectives of the lecture

• After listening to this lecture and reading the accompanying references students will be able to:
 – Distinguish between natural and controlled fertility
 – Describe the proximate determinants framework for studying fertility