SEM for Categorical Outcomes

Statistics for Psychosocial Research II: Structural Models

Qian-Li Xue
Outline

- Consequences of violating distributional assumptions with continuous observed variables
- SEM for categorical observed variables
Consequences of Violation of Multivariate Normality Assumption

<table>
<thead>
<tr>
<th>Observed Variable Dist.</th>
<th>Consistency</th>
<th>Asymptotic Efficiency</th>
<th>ACOV((\hat{\theta}))</th>
<th>Chi-square Estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multivariate Normal</td>
<td>Yes</td>
<td>Yes</td>
<td>Correct</td>
<td>Correct</td>
</tr>
<tr>
<td>No Kurtosis</td>
<td>Yes</td>
<td>Yes</td>
<td>Correct</td>
<td>Correct</td>
</tr>
<tr>
<td>“Arbitrary”</td>
<td>yes</td>
<td>no</td>
<td>Incorrect</td>
<td>incorrect</td>
</tr>
</tbody>
</table>

Adapted from Bollen’s Structural Equations with Latent Variables, p. 416
Tests of Non-normality

- **Definition**
 - For a random variable X with a population mean of μ_1
 - The r^{th} moment about the mean is
 \[\mu_r = E(X - \mu_1)^r \text{ for } r > 1 \]

<table>
<thead>
<tr>
<th>Skewness</th>
<th>Population parameter $\frac{\mu_3}{(\mu_2)^{3/2}}$</th>
<th>Sample Statistic $\frac{m_3}{(m_2)^{3/2}}$</th>
<th>Normal Dist. 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurtosis</td>
<td>Population parameter $\frac{\mu_4}{(\mu_2)^2}$</td>
<td>Sample Statistic $\frac{m_4}{(m_2)^2}$</td>
<td>Normal Dist. 3</td>
</tr>
</tbody>
</table>

\[m_r = \frac{\sum(X - \bar{X})^r}{N} \]
Tests of Non-normality

- **Univariate Test**
 - Calculate the first four sample moments of the observed variable
 - Calculate skewness and kurtosis based on these sample moments
 - Test H_0: skewness=0 and H_0: kurtosis=3 (D’Agostino, 1986, see Bollen, p.421)
 - Joint test of skewness and kurtosis equal to that of a normal distribution, i.e. H_0: skewness=0 and kurtosis=3 (if $N \geq 100$)
 - Using “sktest” command in STATA

- **Multivariate Test for multivariate skewness and kurtosis**
 - Using univariate tests with a Bonferroni adjustment based on the fact: Multivariate normality \Rightarrow univariate normality
 - Mardia’s multivariate test (see Bollen, pp.423-424) or
 - Use “multnorm” in STATA
Solutions for Non-normality

1. Transformation of the observed variables to achieve approximate normality
2. Post-estimation adjustments to the usual test statistics and standard errors (Browne, 1982, 1984)
3. Nonparametric tests via bootstrap resampling procedures
 - However, neither 2 nor 3 corrects the lack of asymptotic efficiency of $\hat{\theta}$
4. Weighted Least Squares (WLS) Estimators

- To minimize the fitting function:

\[
F_{WLS} = (s - \sigma(\theta))' W^{-1} (s - \sigma(\theta))
\]

where \(s \) is a vector of \(n(n+1)/2 \) non-redundant elements in \(S \), \(\sigma(\theta) \) is the vector of corresponding elements in \(\Sigma(\theta) \), and \(W^{-1} \) is a \((n(n+1)/2) \times (n(n+1)/2) \) weight matrix.

- Optimal choice for \(W \): asymptotic covariance matrix of the sample covariances (i.e. \(s \)).

- With the optimal choice of \(W \), the WLS fitting function is also termed “arbitrary distribution function (ADF)”.

- It can be shown that \(F_{GSL} \), \(F_{MLS} \), and \(F_{ULS} \) are special cases of \(F_{WLS} \).
Pros and Cons of the WLS Estimator

Pros
- Minimal assumptions about the distribution of the observed variables
- The WLS is a consistent and efficient estimator
- Provide valid estimates of asymptotic covariance matrix of $\hat{\theta}$ and a chi-square test statistic

Cons
- Computational burden
- Larger sample size requirement for convergence compared to other estimators
- Not clear about the degree to which WLS outperforms F_{GSL}, F_{MLS}, and F_{ULS} in the case of minor violation of normality
SEM with Categorical Observed Variables

- So far, we have assumed that the observed and latent variables are continuous.
- What happens if we have observed variables taking ordinal or binary values?
- Are the estimators and significance tests for continuous variables still valid for categorical variables?
- We will deal with categorical latent variables in next lecture.
Consequences of Using Ordinal Indicators as if They were Continuous

1. $y \neq \Lambda_y \eta + \varepsilon$

2. $x \neq \Lambda_x \xi + \delta$

3. $\Sigma \neq \Sigma(\theta)$

4. $ACOV(s_{ij}, s_{gh}) \neq ACOV(s_{ij}^*, s_{gh}^*)$
Corrective Procedures for 1 and 2

- Define a nonlinear function relating the observed categorical variables (y and/or x) to the latent continuous variables (y* and/or x*)

- Assume $y^* = \Lambda_y \eta + \epsilon$ and $x^* = \Lambda_x \xi + \delta$

- For example,

$$y_1 = \begin{cases}
0 & \text{if } y_1^* \leq a_1 \\
1 & \text{if } y_1^* > a_1
\end{cases}$$

Where a_1 is the category threshold.
Corrective Procedures for 1 and 2

- In general, define

\[
y_1 = \begin{cases}
1 & \text{if } y_1^* \leq a_1 \\
2 & \text{if } a_1 < y_1^* \leq a_2 \\
\vdots \\
c-1 & \text{if } a_{c-2} < y_1^* \leq a_{c-1} \\
c & \text{if } y_1^* > a_{c-1}
\end{cases}
\]

Where \(c \) is the number of categories for \(y_1 \), \(a_i \) (i=1,2, ...,c-1) is the category threshold, and \(y_1^* \) is the latent continuous indicator.
Determine the Thresholds

- y^* and x^* ~ multivariate normal
- Such that each variable of y^* and x^* ~ univariate normal
- Standardize each variable to a mean of 0 and a variance of 1
- An estimate of the threshold is:
 \[a_i = \Phi^{-1} \left(\sum_{k=1}^{i} \frac{N_k}{N} \right) \]
- Where Φ is the standardized normal distribution function

Adapted from Bollen’s Structural Equations with Latent Variables, p.440
Example: Industrialization and Political Democracy

- Y_1, Y_5: freedom of press
- Y_2, Y_6: freedom of group opposition
- Y_3, Y_7: fairness of election
- Y_4, Y_8: effectiveness of legislative body

- x_1 is GNP per capita
- x_2 is energy consumption per capita
- x_3 is % labor force

Bollen pp322-323
Consider a categorized version of the 1960 free press measure Y_1

<table>
<thead>
<tr>
<th>Frequency</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>0.11</td>
<td>0.17</td>
<td>0.07</td>
<td>0.17</td>
<td>0.07</td>
<td>0.29</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Cum.Prop.</td>
<td>0.11</td>
<td>0.28</td>
<td>0.35</td>
<td>0.52</td>
<td>0.59</td>
<td>0.88</td>
<td>0.93</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Threshold</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>-1.24</td>
<td>-0.58</td>
<td>-0.39</td>
<td>0.05</td>
<td>0.22</td>
<td>1.17</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Adapted from Bollen’s Structural Equations with Latent Variables, p. 440-441
Corrective Procedures for 3
(i.e. $\Sigma \neq \Sigma(\theta)$)

- **Assume:**
 - $\Sigma^* = \Sigma(\theta)$, where Σ^* is the covariance matrix of y^* and x^*
 - y^* and x^* ~ multivariate normal
- **Idea:** estimate correlation between each pair of latent variables y_i^* and x_j^*
- If are both y_i and x_j are continuous, calculate *Pearson correlation*
- If are both y_i and x_j are ordinal, calculate *polychoric correlation* between y_i^* and x_j^*
 - If are both y_i and x_j are binary, calculate *tetrachoric correlation* between y_i^* and x_j^*
- If one is ordinal and the other is continuous, calculate *polyserial correlation* between y_i^* and x_j^*
Pros and Cons of Polychoric and Tetrachoric Correlation (Pearson, 1901)

Pros
- In a familiar form of a correlation coefficient
- Separately quantify association and similarity of category definitions
- Independent of number of categories
- Assumptions underlying the polychoric and tetrachoric correlation can be easily tested
- Estimation software is routinely available

Cons
- Model assumptions are not always appropriate
- With only two variables, the assumptions of the tetrachoric correlation can not be tested

(Uebersax JS)
For example, the log likelihood for estimation of the polychoric correlation based on a $1 \times J$ table of two ordinal variables x and y is

$$
\ln L = \sum_{i=1}^{I} \sum_{j=1}^{J} N_{ij} \ln(\pi_{ij}) + C
$$

where N_{ij} is the frequency of observations in the ith and jth categories, C is a constant, a_i and b_j are thresholds for x and y, respectively, and Φ_2 is the bivariate normal distribution function with correlation ρ.

An iterative search algorithm tries different combinations for a_i, b_j and ρ to find a “optimal” combination for minimizing the difference between the expected counts to the observed counts.

(Olsson, 1979)
The polychoric correlation matrix Σ_p based on y and x is a consistent estimator of Σ^*.

Analysis of Σ_p via F_{ML}, F_{GLS}, or F_{ULS} yields consistent estimators of θ.

However, standard errors, significant tests (e.g. chi-square tests) are incorrect!!

A better choice is F_{WLS}:

$$F_{WLS} = [\hat{\rho} - \sigma(\theta)]' W^{-1} [\hat{\rho} - \sigma(\theta)]$$

where $\hat{\rho}$ is $[n(n+1)/2] \times 1$ vector of the polychoric correlations, $\sigma(\theta)$ is the implied covariance matrix, and W is the asymptotic covariance matrix of $\hat{\rho}$ (Muthen, 1984).
MPLUS Fitting of CFA with Categorical Indicators

TITLE: this is an example of a CFA with categorical factor indicators
DATA: FILE IS ex5.2.dat;
VARIABLE: NAMES ARE u1-u6;
CATEGORICAL ARE u1-u6;
MODEL: f1 BY u1-u3;
f2 BY u4-u6;

U1-u6 are binary indicators
Declare U1-u6 to be categorical indicators

The default estimator is robust weighted least squares estimator
MPLUS Fitting of CFA with Continuous and Categorical Indicators

TITLE: this is an example of a CFA with continuous and categorical factor indicators
DATA: FILE IS ex5.3.dat;
VARIABLE: NAMES ARE u1-u3 y4-y6;
CATEGORICAL ARE u1 u2 u3;
MODEL: f1 BY u1-u3;
f2 BY y4-y6;

By default, MPLUS treats y4-u6 as continuous indicators
Declare only u1-u3 to be categorical indicators
Example: Frailty and Disability

- Study Population: Women’s Health and Aging Studies I; N = 1002
- Community-dwelling women 65-101 yrs;
- Represent one-third most disabled women
- Outcome:
 - Frailty by 5 binary indicators
 - Disability by 5 4-level ordinal indicators
- Predictor:
 - Age, education, disease burden
Outcome Definitions

<table>
<thead>
<tr>
<th>Frailty</th>
<th>Mobility Disability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Criteria:</td>
<td>Ordinal Criteria:</td>
</tr>
<tr>
<td>Shrinking (weight loss)</td>
<td>Walk ¼ mile</td>
</tr>
<tr>
<td>Weakness</td>
<td>Climb up 10 steps</td>
</tr>
<tr>
<td>Poor endurance</td>
<td>Lift 10 lbs</td>
</tr>
<tr>
<td>Slowed walking speed</td>
<td>Transfer from bed to chair</td>
</tr>
<tr>
<td>Low physical activity</td>
<td>Heavy housework</td>
</tr>
</tbody>
</table>

Classification:
- Non-frail: 0/5 criteria
- Pre-frail: 1 or 2/5 criteria
- Frail: 3, 4, or 5/5 criteria

Each rated on a four-point scale:
- 0 – no difficulty
- 1 – a little difficulty
- 2 – some difficulty
- 3 – a lot of difficulty/unable
Study Aims

1) Evaluate the association between frailty and mobility disability

2) Study potential risk factors of frailty and mobility disability
 - Age, education, number of chronic diseases

3) Assess racial differences in 1) and 2)
Example: Frailty and Disability
Example: Measurement Model for Mobility

By default, MPLUS sets loadings and thresholds to be the same across groups (i.e. a more restricted model)

TITLE: this is an example of a multiple group CFA
with categorical factor indicators for mobility disability and a threshold structure

DATA:
FILE IS c:\teaching\140.658.2007\catna.dat;
VARIABLE: NAMES ARE baseid age race educ disease shrink strength speed exhaust physical lift walk stairs transfer hhw;
USEVARIABLES ARE race lift-hhw;
CATEGORICAL ARE lift-hhw;
GROUPING IS race (0=white 1=black);

ANALYSIS:
TYPE = MEANSTRUCTURE;
DIFFTEST IS c:\teaching\140.658.2007\deriv.dat;

MODEL:
mobility BY lift* walk@1 stairs-hhw;

OUTPUT: SAMPSTAT;

See output file: catcfad1.out
Example: Measurement Model for Mobility

Set loadings and thresholds for lift, stairs, and hhw to be different across groups (i.e. a less restricted model)

... (SAME AS BEFORE)
ANALYSIS: TYPE = MEANSTRUCTURE;
 DIFFTEST IS c:\teaching\140.658.2007\deriv.dat;
MODEL:
 mobility BY lift* walk@1 stairs-hhw;
MODEL black:
 mobility BY lift;
 [lift$1 lift$2 lift$3];
 {lift@1};
 mobility BY stairs;
 [stairs$1 stairs$2 stairs$3];
 {stairs@1}
 mobility BY transfer;
 [transfer$1 transfer$2 transfer$3];
 {transfer@1};
 mobility BY hhw;
 [hhw$1 hhw$2 hhw$3];
 {hhw@1};
SAVEDATA: DIFFTEST is c:\teaching\140.658.2007\deriv.dat;
OUTPUT: SAMPSTAT;

See output file: catcfad.out
Example: Structural Models for Mobility and Frailty

TITLE: this is an example of a multiple group CFA with covariates and
categorical factor indicators for mobility and frailty and a threshold structure
DATA: FILE IS c:\teaching\140.658.2007\catna.dat;
VARIABLE: NAMES ARE baseid age race educ disease
 shrink strength speed exhaust physical
 lift walk stairs transfer hhw;
USEVARIABLES ARE race age educ disease
 shrink-hhw;
CATEGORICAL ARE shrink-hhw;
GROUPING IS race (0=white 1=black);
ANALYSIS: TYPE = MEANSTRUCTURE;
MODEL:
 frailty BY shrink-physical;
 mobility BY lift* walk@1 stairs-hhw;
 mobility ON frailty;
 mobility frailty ON age educ disease;

MODEL black:
 mobility BY lift;
 [lift$1 lift$2 lift$3];
 {lift@1};
 mobility BY stairs;
 [stairs$1 stairs$2 stairs$3];
 {stairs@1};
 mobility BY transfer;
 [transfer$1 transfer$2 transfer$3];
 {transfer@1};
 mobility BY hhw;
 [hhw$1 hhw$2 hhw$3];
 {hhw@1};

 frailty BY strength;
 [strength$1];
 {strength@1};

See output file: catreg.out