This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Proteins and Amino Acids

Benjamin Caballero, MD, PhD
Johns Hopkins University
Section A

Definitions
Amino Acids

\[
\begin{align*}
\text{H} & \quad \text{C} \quad \text{COOH} \\
\text{NH}_2 & \quad \text{R} \\
\text{H} & \quad \text{C} \quad \text{COOH} \\
\text{NH}_2 & \quad \text{R}
\end{align*}
\]
Peptides

\[
\begin{align*}
\text{NH}_2 & \quad \text{C} & \quad \text{CO} \quad \text{NH} & \quad \text{C} & \quad \text{COOH} \\
\text{H} & \quad & \quad \text{H} & \quad & \quad \\
\text{R} & \quad & \quad \text{R} & \quad & \quad
\end{align*}
\]
Human Amino Acid Requirements

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Amino Acid</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valine</td>
<td>Lysine</td>
<td>Glycine</td>
</tr>
<tr>
<td>Leucine</td>
<td>Threonine</td>
<td>Glutamine</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Cysteine</td>
<td>Alanine</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Arginine</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Proline</td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>Histidinie</td>
<td></td>
</tr>
</tbody>
</table>
Amino Acids Broken Down

General Formula:

- **ALPHATIC AMINO ACIDS**
 - Glycine
 - Alanine
 - *Valine
 - *Leucine
 - *Isoleucine
 - Serine
 - *Threonine
 - Cysteine
 - Cystine
 - *Methionine

- **AROMATIC and HETERO-CYCLIC AMINO ACIDS:**
 - Phenylalanine
 - Tyrosine
 - *Tryptophan

- **BASIC AMINO ACIDS**
 - *Histidine
 - *Lysine
 - Arginine

- **ACIDIC AMINO ACIDS and their AMIDES**
 - Aspartic Acid
 - Asparagine
 - Glutamic Acid
 - Glutamine

- **Proline**
Other Uses for Amino Acids

- Glutamic acid: Neurotransmitter
- Tyrosine: Catecholamines
- Tryptophan: Serotonin, niacin
- Glycine: Purines, pyrimidines
- Cysteine: Glutathion, taurine
- Methionine: Choline, creatine
Section B

Protein and Amino Acid Metabolism
Whole-Body Amino Acid Metabolism

Dietary amino acids → Free amino acid pool → Oxidation

Protein turnover

10
Protein Turnover

Intake: 90g

Fecal N: 10g Urinary N: 75g Other losses: 5g

Liver

Synthesis

Muscle 75
Viscera 127
Plasma 48

Kidney

Muscle 75
Viscera 127
Plasma 48

250g
Some Common Food Proteins

<table>
<thead>
<tr>
<th>Protein</th>
<th>Source</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>Milk</td>
<td>34000</td>
</tr>
<tr>
<td>ß-lactoglobulin</td>
<td>Milk</td>
<td>35000</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>Eggs</td>
<td>44000</td>
</tr>
<tr>
<td>Gluten</td>
<td>Wheat</td>
<td>39000</td>
</tr>
<tr>
<td>Myosin</td>
<td>Meat</td>
<td>850000</td>
</tr>
</tbody>
</table>
Nitrogen Balance

- Humans cannot store excess amino acids not used for protein synthesis; they must be degraded and the N eliminated in the urine.
- In adults, dietary N requirements are determined by the need to replace obligatory losses.
- Once the true requirement is met, the N balance will tend to remain close to zero.
N Balance

IN — OUT = 0

Diet — Fecal — Urinary — Insensitive
N Balance

Balance (gm N/day)

gm Protein N in diet (whole egg)

N equilibrium

Actual requirement

Theoretical requirement
Section C

Protein Quality and Recommendations
Protein Quality

- Quality
- Digestibility
- Biological value
Protein Quality

- **Quality**—Content of essential amino acids relative to a reference protein
Protein Quality

- **Quality**—Content of essential amino acids relative to a reference protein
- **Digestibility**—Percent of ingested protein that is absorbed
Protein Quality

- **Quality**—Content of essential amino acids relative to a reference protein
- **Digestibility**—Percent of ingested protein that is absorbed
- **Biological value**—Percent of absorbed dietary protein that is retained in the body; also, rate of growth per g of protein consumed
Digestibility of Some Proteins

<table>
<thead>
<tr>
<th></th>
<th>True Digestibility</th>
<th>% of Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>Milk</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Meat</td>
<td>94</td>
<td>100</td>
</tr>
<tr>
<td>Maize</td>
<td>85</td>
<td>89</td>
</tr>
<tr>
<td>Rice (polished)</td>
<td>88</td>
<td>93</td>
</tr>
<tr>
<td>Beans</td>
<td>78</td>
<td>82</td>
</tr>
</tbody>
</table>
Amino Acid Content of Some Food Proteins

<table>
<thead>
<tr>
<th>Protein</th>
<th>S-AA</th>
<th>Lys</th>
<th>Trp</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>3.5</td>
<td>5.5</td>
<td>1.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Egg</td>
<td>5.5</td>
<td>6.4</td>
<td>1.6</td>
<td>8.8</td>
</tr>
<tr>
<td>Milk</td>
<td>3.3</td>
<td>7.8</td>
<td>1.4</td>
<td>9.8</td>
</tr>
<tr>
<td>Beef</td>
<td>3.8</td>
<td>8.7</td>
<td>1.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Beans</td>
<td>2.6</td>
<td>6.4</td>
<td>1.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Corn</td>
<td>3.2</td>
<td>2.9</td>
<td>0.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Protein</td>
<td>1.5</td>
<td>6.1</td>
<td>0.9</td>
<td>7.0</td>
</tr>
</tbody>
</table>
Protein Content of Some Foods

<table>
<thead>
<tr>
<th>Food</th>
<th>g/100g of Food</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassava</td>
<td>1.5</td>
</tr>
<tr>
<td>Potato</td>
<td>2.0</td>
</tr>
<tr>
<td>Cow’s milk</td>
<td>3.3</td>
</tr>
<tr>
<td>Rice</td>
<td>7.0</td>
</tr>
<tr>
<td>Eggs</td>
<td>13.0</td>
</tr>
<tr>
<td>Lean beef</td>
<td>19.0</td>
</tr>
</tbody>
</table>
Protein Requirements

- The lowest level of dietary protein intake that balances N losses when . . .
 - Stable energy balance
 - Modest level of physical activity
 - Adequate for physiological conditions
Determination of Dietary Protein Requirements

- **Rationale**
 - Amount that maintains N balance at different levels of energy intake

- **Method**
 - N balance data in adults

- **Assumptions**
 - Miscellaneous losses—8 mg N/day
 - Acknowledges that protein BV is dependent on level of energy intake
Protein Requirements

<table>
<thead>
<tr>
<th>Energy (kcal/ kg Body Weight)*</th>
<th>Mean Requirement of Dietary Protein for Zero N Balance (G Protein/ Kg Body Weight)</th>
<th>Safe Allowance of Protein (Mean Requirement ÷ 2 Standard Deviations)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grams Protein/ Kg Body Weight</td>
</tr>
<tr>
<td>40</td>
<td>0.78</td>
<td>1.02</td>
</tr>
<tr>
<td>45</td>
<td>0.56</td>
<td>0.74</td>
</tr>
<tr>
<td>48</td>
<td>0.51</td>
<td>0.62</td>
</tr>
<tr>
<td>57</td>
<td>0.42</td>
<td>0.50</td>
</tr>
<tr>
<td>Recommended dietary allowance</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>
High and Low Limits of Protein Intake

- Adaptation to a low protein intake
 - Is there a body protein reserve?
 - Limits of adaptation: Accommodation
High and Low Limits of Protein Intake

- **Adaptation to a low protein intake**
 - Is there a body protein reserve?
 - Limits of adaptation: Accommodation

- **Adaptation to a high protein intake**
 - Is excess protein intake harmful?
 - Does a high-protein diet enhances performance?