Outline

1. Introduce the bootstrap principle
2. Outline the bootstrap algorithm
3. Example bootstrap calculations
4. Discussion
The bootstrap

- The bootstrap is a tremendously useful tool for constructing confidence intervals and calculating standard errors for difficult statistics.

- For example, how would one derive a confidence interval for the median?

- The bootstrap procedure follows from the so-called bootstrap principle.
The bootstrap principle

- Suppose that I have a statistic that estimates some population parameter, but I don’t know its sampling distribution.
- The bootstrap principle suggests using the distribution defined by the data to approximate its sampling distribution.
The bootstrap in practice

• In practice, the bootstrap principle is always carried out using simulation

• We will cover only a few aspects of bootstrap resampling

• The general procedure follows by first simulating complete data sets from the observed data with replacement

 ◮ This is approximately drawing from the sampling distribution of that statistic, at least as far as the data is able to approximate the true population distribution

• Calculate the statistic for each simulated data set
• Use the simulated statistics to either define a confidence interval or take the standard deviation to calculate a standard error
Example

- Consider a data set of 630 measurements of gray matter volume for workers from a lead manufacturing plant.
- The median gray matter volume is around 589 cubic centimeters.
- We want a confidence interval for the median of these measurements.
• Bootstrap procedure for calculating for the median from a data set of \(n \) observations

 \(i. \) Sample \(n \) observations \textbf{with replacement} from the observed data resulting in one simulated complete data set

 \(ii. \) Take the median of the simulated data set

 \(iii. \) Repeat these two steps \(B \) times, resulting in \(B \) simulated medians

 \(iv. \) These medians are approximately draws from the sampling distribution of the median of \(n \) observations; therefore we can

 • Draw a histogram of them
 • Calculate their standard deviation to estimate the
standard error of the median

- Take the 2.5^{th} and 97.5^{th} percentiles as a confidence interval for the median
Example code

B <- 1000
n <- length(gmVol)
resamples <- matrix(sample(gmVol,
 n * B,
 replace = TRUE),
 B, n)

medians <- apply(resamples, 1, median)
sd(medians)
[1] 3.148706
quantile(medians, c(.025, .975))
 2.5% 97.5%
582.6384 595.3553
Notes on the bootstrap

- The bootstrap is non-parametric
- However, the theoretical arguments proving the validity of the bootstrap rely on large samples
- Better percentile bootstrap confidence intervals correct for bias
- There are lots of variations on bootstrap procedures; the book “An Introduction to the Bootstrap” by Efron and Tibshirani is a good place to start
library(boot)
stat <- function(x, i) {median(x[i])}
boot.out <- boot(data = gmVol,
 statistic = stat,
 R = 1000)
boot.ci(boot.out)

Level Percentile BCa
95% (583.1, 595.2) (583.2, 595.3)