Outline

1. Confidence intervals for binomial proportions
2. Discuss problems with the Wald interval
3. Introduce Bayesian analysis
4. HPD intervals
5. Confidence interval interpretation
Intervals for binomial parameters

- When $X \sim \text{Binomial}(n, p)$ we know that

 a. $\hat{p} = X/n$ is the MLE for p

 b. $E[\hat{p}] = p$

 c. $\text{Var}(\hat{p}) = p(1 - p)/n$

 d. $\frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})}/n}$ follows a normal distribution for large n

- The latter fact leads to the Wald interval for p

 $$\hat{p} \pm Z_{1-\alpha/2} \sqrt{\hat{p}(1 - \hat{p})}/n$$
Some discussion

- The Wald interval performs terribly
- Coverage probability varies wildly, sometimes being quite low for certain values of n even when p is not near the boundaries

 Example, when $p = .5$ and $n = 40$ the actual coverage of a 95% interval is only 92%

- When p is small or large, coverage can be quite poor even for extremely large values of n

 Example, when $p = .005$ and $n = 1,876$ the actual coverage rate of a 95% interval is only 90%
Simple fix

- A simple fix for the problem is to add two successes and two failures.
- That is let \(\hat{p} = (X + 2)/(n + 4) \).
- The (Agresti-Coull) interval is

\[
\hat{p} \pm Z_{1-\alpha/2} \sqrt{\hat{p}(1-\hat{p})/\tilde{n}}
\]

- Motivation: when \(p \) is large or small, the distribution of \(\hat{p} \) is skewed and it does not make sense to center the interval at the MLE; adding the pseudo observations pulls the center of the interval towards \(\frac{1}{2} \).
- Later we will show that this interval is the inversion of a hypothesis testing technique.
Discussion

- After discussing hypothesis testing, we’ll talk about other intervals for binomial proportions.
- In particular, we will talk about so called exact intervals that guarantee coverage larger than the desired (nominal) value.
Example
Suppose that in a random sample of an at-risk population 13 of 20 subjects had hypertension. Estimate the prevalence of hypertension in this population.

\[\hat{p} = .65, \ n = 20 \]

\[\tilde{p} = .63, \ \tilde{n} = 24 \]

\[Z_{.975} = 1.96 \]

Wald interval \([.44, .86]\)

Agresti-Coull interval \([.44, .82]\)

1/8 likelihood interval \([.42, .84]\)
Bayesian analysis

- Bayesian statistics posits a prior on the parameter of interest
- All inferences are then performed on the distribution of the parameter given the data, called the posterior
- In general,

\[
\text{Posterior} \propto \text{Likelihood} \times \text{Prior}
\]
- Therefore (as we saw in diagnostic testing) the likelihood is the factor by which our prior beliefs are updated to produce conclusions in the light of the data.
Beta priors

• The beta distribution is the default prior for parameters between 0 and 1.

• The beta density depends on two parameters α and β

\[p \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1} \quad \text{for} \quad 0 \leq p \leq 1 \]

• The mean of the beta density is $\alpha/ (\alpha + \beta)$

• The variance of the beta density is

\[\frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \]

• The uniform density is the special case where $\alpha = \beta = 1$
Posterior

• Suppose that we chose values of α and β so that the beta prior is indicative of our degree of belief regarding p in the absence of data.

• Then using the rule that

$$\text{Posterior} \propto \text{Likelihood} \times \text{Prior}$$

and throwing out anything that doesn’t depend on p, we have that

$$\text{Posterior} \propto p^x(1 - p)^{n-x} \times p^{\alpha-1}(1 - p)^{\beta-1}$$

$$= p^{x+\alpha-1}(1 - p)^{n-x+\beta-1}$$

• This density is just another beta density with parameters $\tilde{\alpha} = x + \alpha$ and $\tilde{\beta} = n - x + \beta$.
Posterior mean

- Posterior mean

\[E[p \mid X] = \frac{\tilde{\alpha}}{\tilde{\alpha} + \beta} \]

\[= \frac{x + \alpha}{x + \alpha + n - x + \beta} \]

\[= \frac{x + \alpha}{n + \alpha + \beta} \]

\[= \frac{x}{n} \times \frac{n}{n + \alpha + \beta} + \frac{\alpha}{\alpha + \beta} \times \frac{\alpha + \beta}{n + \alpha + \beta} \]

\[= \text{MLE} \times \pi + \text{Prior Mean} \times (1 - \pi) \]
• The posterior mean is a mixture of the MLE (\hat{p}) and the prior mean
• π goes to 1 as n gets large; for large n the data swamps the prior
• For small n, the prior mean dominates
• Generalizes how science should ideally work; as data becomes increasingly available, prior beliefs should matter less and less
• With a prior that is degenerate at a value, no amount of data can overcome the prior
Posterior variance

The posterior variance is

$$\text{Var}(p | x) = \frac{\tilde{\alpha}\tilde{\beta}}{\tilde{\alpha} + \tilde{\beta})^2(\tilde{\alpha} + \tilde{\beta} + 1)} = \frac{(x + \alpha)(n - x + \beta)}{(n + \alpha + \beta)^2(n + \alpha + \beta + 1)}$$

Let $\tilde{p} = (x + \alpha)/(n + \alpha + \beta)$ and $\tilde{n} = n + \alpha + \beta$ then we have

$$\text{Var}(p | x) = \frac{\tilde{p}(1 - \tilde{p})}{\tilde{n} + 1}$$
Discussion

• If $\alpha = \beta = 2$ then the posterior mean is

$$\hat{p} = \frac{x + 2}{n + 4}$$

and the posterior variance is

$$\hat{p}(1 - \hat{p})/\tilde{n} + 1$$

• This is almost exactly the mean and variance we used for the Agresti-Coull interval
Example

- Consider the previous example where $x = 13$ and $n = 20$
- Consider a uniform prior, $\alpha = \beta = 1$
- The posterior is proportional to (see formula above)
 \[p^{x+\alpha-1}(1 - p)^{n-x+\beta-1} = p^x(1 - p)^{n-x} \]
 that is, for the uniform prior, the posterior is the likelihood
- Consider the instance where $\alpha = \beta = 2$ (recall this prior is humped around the point .5) the posterior is
 \[p^{x+\alpha-1}(1 - p)^{n-x+\beta-1} = p^{x+1}(1 - p)^{n-x+1} \]
- The “Jeffrey’s prior” which has some theoretical benefits puts $\alpha = \beta = .5$
alpha = 0.5 beta = 0.5

prior, likelihood, posterior

p

Prior
Likelihood
Posterior
alpha = 1 beta = 1

prior, likelihood, posterior
alpha = 2 beta = 2
alpha = 2 beta = 10

prior, likelihood, posterior

p
alpha = 100 beta = 100
Bayesian credible intervals

- A *Bayesian credible interval* is the Bayesian analog of a confidence interval
- A 95% credible interval, \([a, b]\) would satisfy
 \[P(p \in [a, b] \mid x) = .95 \]
- The best credible intervals chop off the posterior with a horizontal line in the same way we did for likelihoods
- These are called highest posterior density (HPD) intervals
The diagram shows a posterior distribution with a 95% credible interval. The shaded area indicates the range from (0.44, 0.64) to (0.84, 0.64).
Install the `binom` package, then the command

```R
library(binom)
binom.bayes(13, 20, type = "highest")
```

gives the HPD interval. The default credible level is 95% and the default prior is the Jeffrey’s prior.
Interpretation of confidence intervals

- Confidence interval: (Wald) \([0.44, 0.86]\)
- Fuzzy interpretation:

 We are 95% confident that \(p\) lies between \(0.44\) to \(0.86\)

- Actual interpretation:

 The interval \(0.44\) to \(0.86\) was constructed such that in repeated independent experiments, 95% of the intervals obtained would contain \(p\).

- Yikes!
Likelihood intervals

• Recall the $1/8$ likelihood interval was $[.42, .84]$

• Fuzzy interpretation:

 The interval $[.42, .84]$ represents plausible values for p.

• Actual interpretation

 The interval $[.42, .84]$ represents plausible values for p in the sense that for each point in this interval, there is no other point that is more than 8 times better supported given the data.

• Yikes!
Credible intervals

- Recall the Jeffrey’s prior 95% credible interval was [.44, .84]

- Actual interpretation

 The probability that p is between .44 and .84 is 95%.