Outline

1. Review about logs
2. Introduce the geometric mean
3. Interpretations of the geometric mean
4. Confidence intervals for the geometric mean
5. Log-normal distribution
6. Log-normal based intervals
Logs

- Recall that $\log_B(x)$ is the number y so that $B^y = x$
- Note that you can not take the log of a negative number; $\log_B(1)$ is always 0 and $\log_B(0)$ is $-\infty$
- When the base is $B = e$ we write \log_e as just \log or \ln
- Other useful bases are 10 (orders of magnitude) or 2
- Recall that $\log(ab) = \log(a) + \log(b)$, $\log(a^b) = b \log(a)$, $\log(a/b) = \log(a) - \log(b)$ (log turns multiplication into addition, division into subtraction, powers into multiplication)
Some reasons for “logging” data

- To correct for right skewness
- When considering ratios
- In settings where errors are feasibly multiplicative, such as when dealing with concentrations or rates
- To consider orders of magnitude (using log base 10); for example when considering astronomical distances
- Counts are often logged (though note the problem with zero counts)
The geometric mean

- The (sample) **geometric mean** of a data set X_1, \ldots, X_n is

$$
\left(\prod_{i=1}^{n} X_i \right)^{1/n}
$$

- Note that (provided that the X_i are positive) the log of the geometric mean is

$$
\frac{1}{n} \sum_{i=1}^{n} \log(X_i)
$$

- As the log of the geometric mean is an average, the LLN and clt apply (under what assumptions?)

- The geometric mean is always less than or equal to the sample (arithmetic) mean
The geometric mean

- The geometric mean is often used when the X_i are all multiplicative
- Suppose that in a population of interest, the prevalence of a disease rose 2% one year, then fell 1% the next, then rose 2%, then rose 1%; since these factors act multiplicatively it makes sense to consider the geometric mean

$$(1.02 \times .99 \times 1.02 \times 1.01)^{1/4} = 1.01$$

for a 1% geometric mean increase in disease prevalence
• Notice that multiplying the initial prevalence by 1.01^4 is the same as multiplying by the original four numbers in sequence.

• Hence 1.01 is constant factor by which you would need to multiply the initial prevalence each year to achieve the same overall increase in prevalence over a four year period.

• The arithmetic mean, in contrast, is the constant factor by which you would need to add each year to achieve the same total increase ($1.02 + .99 + 1.02 + 1.01$).

• In this case the product and hence the geometric mean make more sense than the arithmetic mean.
Nifty fact

- The question corner (google) at the University of Toronto’s web site (where I got much of this) has a fun interpretation of the geometric mean

- If a and b are the lengths of the sides of a rectangle then

 - The arithmetic mean $(a+b)/2$ is the length of the sides of the square that has the same perimeter

 - The geometric mean $(ab)^{1/2}$ is the length of the sides of the square that has the same area

- So if you’re interested in perimeters (adding) use the arithmetic mean; if you’re interested in areas (multiplying) use the geometric mean
Asymptotics

- Note, by the LLN the log of the geometric mean converges to $\mu = E[\log(X)]$
- Therefore the geometric mean converges to $\exp\{E[\log(X)]\} = e^\mu$, which is not the population mean on the natural scale; we call this the population geometric mean (but no one else seems to)
- To reiterate

$$\exp\{E[\log(x)]\} \neq E[\exp\{\log(X)\}] = E[X]$$

- Note if the distribution of $\log(X)$ is symmetric then

$$\frac{1}{2} = P(\log X \leq \mu) = P(X \leq e^\mu)$$

- Therefore, for log-symmetric distributions the geometric mean is estimating the median
Using the CLT

- If you use the CLT to create a confidence interval for the log measurements, your interval is estimating μ, the expected value of the log measurements.
- If you exponentiate the endpoints of the interval, you are estimating e^μ, the population geometric mean.
- Recall, e^μ is the population median when the distribution of the logged data is symmetric.
- This is especially useful for paired data when their ratio, rather than their difference, is of interest.
Example
Comparisons

- Consider when you have two independent groups, logging the individual data points and creating a confidence interval for the difference in the log means.

- Prove to yourself that exponentiating the endpoints of this interval is then an interval for the ratio of the population geometric means, $\frac{e^{\mu_1}}{e^{\mu_2}}$.
The log-normal distribution

- A random variable is **log-normally** distributed if its log is a normally distributed random variable.
- “I am log-normal” means “take logs of me and then I’ll then be normal”.
- Note log-normal random variables are not logs of normal random variables!!!!!! (You can’t even take the log of a normal random variable).
- Formally, Y is lognormal (μ, σ^2) if $\log(Y) \sim \mathcal{N}(\mu, \sigma^2)$.
- If $X \sim \mathcal{N}(\mu, \sigma^2)$ then $Y = e^X$ is log-normal.
The log-normal distribution

- The log-normal density is
 \[
 \frac{1}{\sqrt{2\pi}} \times \frac{\exp[\frac{-(\log(y) - \mu)^2}{2\sigma^2}]}{y} \quad \text{for} \quad 0 \leq y \leq \infty
 \]

- Its mean is \(e^{\mu + \frac{\sigma^2}{2}}\) and variance is \(e^{2\mu + \sigma^2}(e^{\sigma^2} - 1)\)

- Its median is \(e^\mu\)
The log-normal distribution

- Notice that if we assume that X_1, \ldots, X_n are log-normal(μ, σ^2) then $Y_1 = \log X_1, \ldots, Y_n = \log X_n$ are normally distributed.

- Creating a Gosset's t confidence interval on using the Y_i is a confidence interval for μ the log of the median of the X_i.

- Exponentiate the endpoints of the interval to obtain a confidence interval for e^μ, the median on the original scale.

- Assuming log-normality, exponentiating t confidence intervals for the difference in two log means again estimates ratios of geometric means.
Example