This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.
Immunotoxicology

Michael A. Trush, PhD
Johns Hopkins University
Section A

Overview of Immunotoxicology
Definition

- **Immunotoxicology** is an adverse or inappropriate change in the structure or function of the immune system after exposure to a foreign substance (xenobiotic)
Potential Effects of Chemical Exposure on Immunological Function

May lead to enhanced susceptibility to disease

Immuno-enhancement

May lead to immune-mediated disease (hypersensitivity, autoimmunity)

Immuno-suppression

Homeostasis

No effect

May lead to enhanced susceptibility to disease
Cardinal Characteristics of the Immune System

- Specificity
- Memory
- Ability to distinguish self from non-self
Differentiation of hematopoietic stem cells
Cytokines

- Molecular mediators of immune and inflammatory reactions
 - Interleukins
 - Interferons
 - Haemopoietic growth factors
 - Tumor necrosis factors
 - Transforming growth factors
Section B

The Basics of an Immune Response
Lymphocyte Cloning

- Lymphocytes are clonally distributed with respect to antigen specificity
- Each clone of lymphocytes has unique membrane receptor for antigen
Interaction of Lymphocytes

With Antigen Results in Clonal Expansion
Daughter Cells Resulting from Clonal Expansion

- They either remain as long-lived memory cells or differentiate into effector cells.
Memory Cells and Effector Cells

- **Memory cells**
 - Provide for an accelerated and more vigorous response following a second encounter with the same antigen

- **Effector cells**
 - Either directly or indirectly cause the elimination of antigen
Two Main Types of Lymphocytes

- T Lymphocytes
- B Lymphocytes

- Memory
- Specificity
- Distinguish Self From Non-Self
Diversity of T Lymphocytes

- T
- Division and Differentiation
- Immunological Memory
- Effector Cells
- Regulatory Cells
T Effector Cells

Cytotoxic T Lymphocytes
- Destruction of virus-infected host cells

Cytokine producing cells
- Augmentation of macrophage function and other aspects of protective immunity
Th → IL-2, TNF, IFN\(\gamma\) → Delayed Hypersensitivity

Th → IL-4, IL-5, IL-6, IL-10, IL-13 → IgE Production

\(\text{(inhibitory)}\)
Cytokines Produced by the Two Main Classes of TH Cells Exert Reciprocal Antagonistic Effects on IgE Antibody Production

IFN-γ

Inhibits

IgE

Promotes

IL-4

TH1

TH2
The End-Cell of B Lymphocyte Differentiation Is the Plasma Cell
Antibody Structure

Biological Effector Function

Antigen Binding
Functions of Antibodies

- Lysis with complement
- Opsonization for phagocytosis
- Neutralization of toxins
- Protection of mucosal surfaces
- Transplacental transfer
General Schematic of Antigen Processing and Presentation
T Lymphocytes Recognize Processed Antigen Presented with “Self” (Major Histocompatibility Complex) Molecules
TH Cells and the Regulation of IgE Antibody Production

TH cells help antibody respond to antigen.
Section C

Immunologically Mediated Tissue Injury
Immunologically Mediated Tissue Injury

- While immune responses constitute a protective mechanism to foreign organisms, they can lead to tissue damage.
- An immune response that results in tissue injury is broadly referred to as a hypersensitivity reaction.
- Such responses are classified into four categories based on the immune mechanisms involved.
Classification of Immunologic Diseases

- **Type I**: immediate hypersensitivity
 - IgE antibody; mast cells
- **Type II**: antibody-mediated
 - IgM, IgG antibodies against tissue or cell surface antigens
Classification of Immunologic Diseases

- **Type III**: immune complexes of IgG or IgM antibodies
- **Type IV**: delayed-type hypersensitivity
 - Sensitized CD4 lymphocytes, macrophages
Antigen → T Cell

CD4 → TCR → Class II + peptide → Antigen-Presenting Cell (APC)

TH2 → IgE → Coombs and Gell Classification

TH2 → IgM, IgG → II

TH2 → IgM, IgG → III

TH1 → DTH Cells → IV
Hapten

- A **hapten** is a substance that is too small to induce an immune response (i.e., low-molecular-weight chemicals)
- Haptens can induce an immune response when they bind to a larger carrier molecule (i.e., protein) to form a hapten-carrier conjugate (adduct)
Schematic Diagram of Chemical Interaction Leading to Hypersensitivity Reactions or Autoimmunity

Chemical

Protein

Antigenic determinant

Naïve protein

Altered protein

Hapten/protein conjugate

Disease state

Autoimmunity

Hypersensitivity

Mechanism of action

Effect

Adjuvancy

CD8+

Ab-Dependent cytotoxicity

Complement-mediated cytotoxicity

Immune-complex Mediated

IgE

CD4+

Exacerbate

Preexisting disease

Induce disease

Exacerbate

Preexisting disease

Induce disease
Allergic (Hypersensitivity) Reactions Take Place in Two Stages

First encounter with antigen \quad \Rightarrow \quad \text{Sensitization phase}

Second or subsequent encounter with antigen \quad \Rightarrow \quad \text{Elicitation phase}
Immunologic Mechanism of Contact Sensitization (Skin)

INDUCTION
- Allergen
- Class II MHC
- Langerhans Cell
- Via Afferent Lymphatics
- Peripheral Lymph Node
- IL-1
- IL-2
- IL-2 Receptor
- Proliferation

ELICITATION
- Allergen
- Sensitized T-Lymphoblast
- Memory T-Cell
- Sensitized T-Cell
- Mediator Release
- Swelling Erythema Vesiculation
Development of Allergic Contact Dermatitis, a Delayed Hypersensitivity Reaction

Primary contact
- T-cells → T memory cells
- No dermatitis

Secondary contact
- T memory cells → Many active cells
- Dermatitis

Poison ivy catechol molecules → Catechols combined with skin proteins

Skin protein

7-10 days

1-2 days
Contact Dermatitis

Contact dermatitis around a healing rug burn.
Question

- The skin and lungs are often target organs of toxicity by immune-mediated mechanisms — Why?
Section D

Case Studies: TMA and Beryllium
Respiratory Allergy Sensitization Phase

- Encounter with Antigen
- Dermal Inhalation
- IgE ANTIBODY
- Binds to Tissue Mast Cells
Respiratory Allergy
Elicitation Phase

Second or subsequent encounter with Antigen

Antigen Cross-Links
Mast Cell-Bound
IgE Antibody

Respiratory Tract

Degranulation

Vasoactive Amine
Leukotrienes

Vasodilation Bronchoconstriction
Trimellitic Anhydride

Elicits Immediate Hypersensitivity in Lung

- TMA covalently reacts with protein to form immunogenic hapten-protein conjugates which can elicit the formation of IgE antibody as detected by RAST

- (Radioallergosorbent Test) measures IgE antibody in serum with a radioactive indicator system
Immunogenic Hapten–Protein Conjugates

Example of how a chemical covalently reacts with protein to form immunogenic hapten–protein conjugates
Average Airborne TMA Dust Concentrations

As Measured for Several Different Jobs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Operator</td>
<td>2.1</td>
<td>0.0006</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td><0.001 (12/82)</td>
<td><0.04</td>
</tr>
<tr>
<td>Ass’t Operator</td>
<td>0.82</td>
<td>0.0002</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.10</td>
<td><0.04</td>
</tr>
<tr>
<td>Packager</td>
<td>0.007</td>
<td>0.0007</td>
<td>0.11</td>
<td>0.10</td>
<td>0.18</td>
<td>0.05</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Average TMA dust concentration of 5 years
Annual Determinations of Total Antibody and Specific IgE Bound to 123 I-TM-HAS from 1979–1983

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100,000</td>
<td>ND</td>
<td>18,000</td>
<td>9,600</td>
<td>2,400</td>
</tr>
<tr>
<td>1</td>
<td>12,500</td>
<td>2,400</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9,500</td>
<td>6,600</td>
<td>4,600</td>
<td>2,800</td>
<td>340</td>
</tr>
<tr>
<td>3</td>
<td>2,200</td>
<td>3,100</td>
<td>1,050</td>
<td>Trace</td>
<td>600</td>
</tr>
<tr>
<td>Worker</td>
<td>TMA Exposure</td>
<td>TMA-Induced Symptoms</td>
<td>Total Antibody (ng/ml ^{123}i-TM-HSA Bound)</td>
<td>Specific IgE (ng/ml ^{123}i-TM-HSA Bound)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Assistant operator</td>
<td>LRSS</td>
<td>100,000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Operator</td>
<td>LRSS</td>
<td>12,500</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Assistant operator</td>
<td>LRSS</td>
<td>9,500</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Maintenance operator</td>
<td>Rhinitis</td>
<td>0</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Laboratory technician</td>
<td>Rhinitis/asthma</td>
<td>0</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Extruder operator</td>
<td>None</td>
<td>2,200</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>7–20</td>
<td>—</td>
<td>Irritant or none</td>
<td>0</td>
<td>< 1.0</td>
<td></td>
</tr>
</tbody>
</table>

Initial clinical evaluations and total antibody and specific IgE binding to ^{125}i-TM-HAS of 20 workers—group 1
Beryllium Induces Delayed Type Hypersensitivity in Lung

- Following inhalation exposure, beryllium can have a half-life from several weeks to 6 months in the lungs.
- In the lungs, beryllium can act as a direct irritant leading to non-specific inflammation.
- In susceptible individuals (3–6%), beryllium exposure results in a DTH response.
Lymphocyte Stimulation Test

- Whole blood and saline
- Centrifugation
- Ficoll Isopaque
- Separated blood
- Cultivation
- Glass fibre filter
- Incorporation of thymidine
- Antigen suspension
- Culture medium
- Measure radioactivity
In vitro proliferation of purified T-cells (A) and T-cell subpopulations (B) from the lungs and blood of patients with chronic beryllium disease and controls in response to beryllium